C#實現(xiàn)矩陣加法、取負、數(shù)乘、乘法的方法
本文實例講述了C#實現(xiàn)矩陣加法、取負、數(shù)乘、乘法的方法。分享給大家供大家參考。具體如下:
1.幾個基本函數(shù)
1)判斷一個二維數(shù)組是否為矩陣:如果每行的列數(shù)都相等則是矩陣,沒有元素的二維數(shù)組是矩陣
/// <summary>
/// 判斷一個二維數(shù)組是否為矩陣
/// </summary>
/// <param name="matrix">二維數(shù)組</param>
/// <returns>true:是矩陣 false:不是矩陣</returns>
private static bool isMatrix(double[][] matrix)
{
//空矩陣是矩陣
if (matrix.Length < 1) return true;
//不同行列數(shù)如果不相等,則不是矩陣
int count = matrix[0].Length;
for (int i = 1; i < matrix.Length; i++)
{
if (matrix[i].Length != count)
{
return false;
}
}
//各行列數(shù)相等,則是矩陣
return true;
}
2)計算一個矩陣的行數(shù)和列數(shù):就是計算兩個維度的Length屬性
/// <summary>
/// 計算一個矩陣的行數(shù)和列數(shù)
/// </summary>
/// <param name="matrix">矩陣</param>
/// <returns>數(shù)組:行數(shù)、列數(shù)</returns>
private static int[] MatrixCR(double[][] matrix)
{
//接收到的參數(shù)不是矩陣則報異常
if (!isMatrix(matrix))
{
throw new Exception("接收到的參數(shù)不是矩陣");
}
//空矩陣行數(shù)列數(shù)都為0
if (!isMatrix(matrix) || matrix.Length == 0)
{
return new int[2] { 0, 0 };
}
return new int[2] { matrix.Length, matrix[0].Length };
}
3)向控制臺打印矩陣:注意,如果前后都是兩個char類型的量,則運算符+會把前后兩個字符轉化為整數(shù)相加,而不會將前后字符視為字符串連接
/// <summary>
/// 打印矩陣
/// </summary>
/// <param name="matrix">待打印矩陣</param>
private static void PrintMatrix(double[][] matrix)
{
for (int i = 0; i < matrix.Length; i++)
{
for (int j = 0; j < matrix[i].Length; j++)
{
Console.Write(matrix[i][j] + "\t");
//注意不能寫為:Console.Write(matrix[i][j] + '\t');
}
Console.WriteLine();
}
}
2.矩陣加法
/// <summary>
/// 矩陣加法
/// </summary>
/// <param name="matrix1">矩陣1</param>
/// <param name="matrix2">矩陣2</param>
/// <returns>和</returns>
private static double[][] MatrixAdd(double[][] matrix1, double[][] matrix2)
{
//矩陣1和矩陣2須為同型矩陣
if (MatrixCR(matrix1)[0] != MatrixCR(matrix2)[0] ||
MatrixCR(matrix1)[1] != MatrixCR(matrix2)[1])
{
throw new Exception("不同型矩陣無法進行加法運算");
}
//生成一個與matrix1同型的空矩陣
double[][] result = new double[matrix1.Length][];
for (int i = 0; i < result.Length; i++)
{
result[i] = new double[matrix1[i].Length];
}
//矩陣加法:把矩陣2各元素值加到矩陣1上,返回矩陣1
for (int i = 0; i < result.Length; i++)
{
for (int j = 0; j < result[i].Length; j++)
{
result[i][j] = matrix1[i][j] + matrix2[i][j];
}
}
return result;
}
3.矩陣取負
/// <summary>
/// 矩陣取負
/// </summary>
/// <param name="matrix">矩陣</param>
/// <returns>負矩陣</returns>
private static double[][] NegtMatrix(double[][] matrix)
{
//合法性檢查
if (!isMatrix(matrix))
{
throw new Exception("傳入的參數(shù)并不是一個矩陣");
}
//參數(shù)為空矩陣則返回空矩陣
if (matrix.Length == 0)
{
return new double[][] { };
}
//生成一個與matrix同型的空矩陣
double[][] result = new double[matrix.Length][];
for (int i = 0; i < result.Length; i++)
{
result[i] = new double[matrix[i].Length];
}
//矩陣取負:各元素取相反數(shù)
for (int i = 0; i < result.Length; i++)
{
for (int j = 0; j < result[0].Length; j++)
{
result[i][j] = -matrix[i][j];
}
}
return result;
}
4.矩陣數(shù)乘
/// <summary>
/// 矩陣數(shù)乘
/// </summary>
/// <param name="matrix">矩陣</param>
/// <param name="num">常數(shù)</param>
/// <returns>積</returns>
private static double[][] MatrixMult(double[][] matrix, double num)
{
//合法性檢查
if (!isMatrix(matrix))
{
throw new Exception("傳入的參數(shù)并不是一個矩陣");
}
//參數(shù)為空矩陣則返回空矩陣
if (matrix.Length == 0)
{
return new double[][] { };
}
//生成一個與matrix同型的空矩陣
double[][] result = new double[matrix.Length][];
for (int i = 0; i < result.Length; i++)
{
result[i] = new double[matrix[i].Length];
}
//矩陣數(shù)乘:用常數(shù)依次乘以矩陣各元素
for (int i = 0; i < result.Length; i++)
{
for (int j = 0; j < result[0].Length; j++)
{
result[i][j] = matrix[i][j] * num;
}
}
return result;
}
5.矩陣乘法
/// <summary>
/// 矩陣乘法
/// </summary>
/// <param name="matrix1">矩陣1</param>
/// <param name="matrix2">矩陣2</param>
/// <returns>積</returns>
private static double[][] MatrixMult(double[][] matrix1, double[][] matrix2)
{
//合法性檢查
if (MatrixCR(matrix1)[1] != MatrixCR(matrix2)[0])
{
throw new Exception("matrix1 的列數(shù)與 matrix2 的行數(shù)不想等");
}
//矩陣中沒有元素的情況
if (matrix1.Length == 0 || matrix2.Length == 0)
{
return new double[][] { };
}
//matrix1是m*n矩陣,matrix2是n*p矩陣,則result是m*p矩陣
int m = matrix1.Length, n = matrix2.Length, p = matrix2[0].Length;
double[][] result = new double[m][];
for (int i = 0; i < result.Length; i++)
{
result[i] = new double[p];
}
//矩陣乘法:c[i,j]=Sigma(k=1→n,a[i,k]*b[k,j])
for (int i = 0; i < m; i++)
{
for (int j = 0; j < p; j++)
{
//對乘加法則
for (int k = 0; k < n; k++)
{
result[i][j] += (matrix1[i][k] * matrix2[k][j]);
}
}
}
return result;
}
6.函數(shù)調用示例
1)Main函數(shù)代碼
static void Main(string[] args)
{
//示例矩陣
double[][] matrix1 = new double[][]
{
new double[] { 1, 2, 3 },
new double[] { 4, 5, 6 },
new double[] { 7, 8, 9 }
};
double[][] matrix2 = new double[][]
{
new double[] { 2, 3, 4 },
new double[] { 5, 6, 7 },
new double[] { 8, 9, 10 }
};
//矩陣加法
PrintMatrix(MatrixAdd(matrix1, matrix2));
Console.WriteLine();
//矩陣取負
PrintMatrix(NegtMatrix(matrix1));
Console.WriteLine();
//矩陣數(shù)乘
PrintMatrix(MatrixMult(matrix1, 3));
Console.WriteLine();
//矩陣乘法
PrintMatrix(MatrixMult(
new double[][] {
new double[]{ 4, -1, 2 },
new double[]{ 1, 1, 0 },
new double[]{ 0, 3, 1 }},
new double[][] {
new double[]{ 1, 2 },
new double[]{ 0, 1 },
new double[]{ 3, 0 }}));
Console.WriteLine();
Console.ReadLine();
}
2)示例運行結果

希望本文所述對大家的C#程序設計有所幫助。
相關文章
C# OpenCvSharp利用白平衡技術實現(xiàn)圖像修復功能
這篇文章主要為大家詳細介紹了C# OpenCvSharp如何利用白平衡技術實現(xiàn)圖像修復功能,文中的示例代碼講解詳細,希望對大家有一定的幫助2024-02-02
用C#獲取硬盤序列號,CPU序列號,網(wǎng)卡MAC地址的源碼
用C#獲取硬盤序列號,CPU序列號,網(wǎng)卡MAC地址的源碼...2007-03-03

