java隨機(jī)數(shù)生成具體實現(xiàn)代碼
更新時間:2016年04月26日 16:27:24 作者:賣蠟筆的小新
這篇文章主要為大家分享了java隨機(jī)數(shù)生成具體實現(xiàn)代碼,具有一定的參考價值,感興趣的小伙伴們可以參考一下
本文實例為大家分享了java隨機(jī)數(shù)生成代碼,供大家參考,具體內(nèi)容如下
package com.gonvan.common.utils; import java.util.*; /** * 隨機(jī)數(shù)工具 * * @author yuerzm * */ public final class LotteryAliasMethod { /** * The random number generator used to sample from the distribution. */ private final Random random; /** * The alias tables. */ private final int[] alias; /** * The probability tables. */ private final double[] probability; /** * Constructs a new AliasMethod to sample from a discrete distribution and * hand back outcomes based on the probability distribution. * <p/> * Given as input a list of probabilities corresponding to outcomes 0, 1, * ..., n - 1, this constructor creates the probability and alias tables * needed to efficiently sample from this distribution. * * @param probabilities * The list of probabilities. */ public LotteryAliasMethod(List<Double> probabilities) { this(probabilities, new Random()); } /** * Constructs a new AliasMethod to sample from a discrete distribution and * hand back outcomes based on the probability distribution. * <p/> * Given as input a list of probabilities corresponding to outcomes 0, 1, * ..., n - 1, along with the random number generator that should be used as * the underlying generator, this constructor creates the probability and * alias tables needed to efficiently sample from this distribution. * * @param probabilities * The list of probabilities. * @param random * The random number generator */ public LotteryAliasMethod(List<Double> probabilities, Random random) { /* Begin by doing basic structural checks on the inputs. */ if (probabilities == null || random == null) throw new NullPointerException(); if (probabilities.size() == 0) throw new IllegalArgumentException("Probability vector must be nonempty."); /* Allocate space for the probability and alias tables. */ probability = new double[probabilities.size()]; alias = new int[probabilities.size()]; /* Store the underlying generator. */ this.random = random; /* Compute the average probability and cache it for later use. */ final double average = 1.0 / probabilities.size(); /* * Make a copy of the probabilities list, since we will be making * changes to it. */ probabilities = new ArrayList<Double>(probabilities); /* Create two stacks to act as worklists as we populate the tables. */ Deque<Integer> small = new ArrayDeque<Integer>(); Deque<Integer> large = new ArrayDeque<Integer>(); /* Populate the stacks with the input probabilities. */ for (int i = 0; i < probabilities.size(); ++i) { /* * If the probability is below the average probability, then we add * it to the small list; otherwise we add it to the large list. */ if (probabilities.get(i) >= average) large.add(i); else small.add(i); } /* * As a note: in the mathematical specification of the algorithm, we * will always exhaust the small list before the big list. However, * due to floating point inaccuracies, this is not necessarily true. * Consequently, this inner loop (which tries to pair small and large * elements) will have to check that both lists aren't empty. */ while (!small.isEmpty() && !large.isEmpty()) { /* Get the index of the small and the large probabilities. */ int less = small.removeLast(); int more = large.removeLast(); /* * These probabilities have not yet been scaled up to be such that * 1/n is given weight 1.0. We do this here instead. */ probability[less] = probabilities.get(less) * probabilities.size(); alias[less] = more; /* * Decrease the probability of the larger one by the appropriate * amount. */ probabilities.set(more, (probabilities.get(more) + probabilities.get(less)) - average); /* * If the new probability is less than the average, add it into the * small list; otherwise add it to the large list. */ if (probabilities.get(more) >= 1.0 / probabilities.size()) large.add(more); else small.add(more); } /* * At this point, everything is in one list, which means that the * remaining probabilities should all be 1/n. Based on this, set them * appropriately. Due to numerical issues, we can't be sure which * stack will hold the entries, so we empty both. */ while (!small.isEmpty()) probability[small.removeLast()] = 1.0; while (!large.isEmpty()) probability[large.removeLast()] = 1.0; } /** * Samples a value from the underlying distribution. * * @return A random value sampled from the underlying distribution. */ public int next() { /* Generate a fair die roll to determine which column to inspect. */ int column = random.nextInt(probability.length); /* Generate a biased coin toss to determine which option to pick. */ boolean coinToss = random.nextDouble() < probability[column]; /* Based on the outcome, return either the column or its alias. */ return coinToss ? column : alias[column]; } }
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助。
相關(guān)文章
詳解基于MybatisPlus兩步實現(xiàn)多租戶方案
這篇文章主要介紹了詳解基于MybatisPlus兩步實現(xiàn)多租戶方案,本文分兩步,通過實例代碼給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2021-04-04Spring?data?jpa緩存機(jī)制使用總結(jié)
這篇文章主要介紹了Spring?data?jpa緩存機(jī)制使用總結(jié),具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2023-12-12Java中的SimpleDateFormat的線程安全問題詳解
這篇文章主要介紹了Java中的SimpleDateFormat的線程安全問題詳解,sonar 是一個代碼質(zhì)量管理工具,SonarQube是一個用于代碼質(zhì)量管理的開放平臺,為項目提供可視化報告, 連續(xù)追蹤項目質(zhì)量演化過程,需要的朋友可以參考下2024-01-01跟我學(xué)Java Swing之游戲設(shè)計(1)
跟我學(xué)Java Swing之游戲設(shè)計(1)...2006-12-12IntelliJ Plugin 開發(fā)之添加第三方j(luò)ar的示例代碼
這篇文章主要介紹了IntelliJ Plugin 開發(fā)之添加第三方j(luò)ar的示例代碼,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-09-09JAVA實現(xiàn)空間索引編碼——GeoHash的示例
本篇文章主要介紹了JAVA實現(xiàn)空間索引編碼——GeoHash的示例,如何從眾多的位置信息中查找到離自己最近的位置,有興趣的朋友可以了解一下2016-10-10