欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

C語言中實現(xiàn)KMP算法的實例講解

 更新時間:2016年06月03日 09:40:54   作者:努力奔跑的羊  
KMP算法即字符串匹配算法,C語言中KMP可以避免指針回溯從而達到高效,接下來就來總結(jié)一下C語言中實現(xiàn)KMP算法的實例講解

一般的算法為什么這么低效呢?那是因為主串指針回溯情況過多:
主串指針如果不回溯的話,速度就會加快,那我們就會想:
如何讓主串指針不回溯?
KMP算法就是解決了這個問題,所以速度變得更快速了。
它是這樣子的:
用一個數(shù)組:next[] 求得失配時的位置,然后保存下來。
要說清楚KMP算法,可以從樸素的模式匹配算法說起。 
樸素的模式匹配算法比較容易理解,其實現(xiàn)如下   

 int  Index(char  s[],  char  p[],  int  pos) 
 {  
  int  i,  j,  slen,  plen;  
  i  =  pos;  
  j  =  0;  
  slen  =  strlen(s);  
  plen  =  strlen(p);  
  while((i  <  slen)  &&  (j  <  plen))  
  {  
   if((s[i]  ==  p[j]))  
   {  
    i++;  
    j++;  
   }  
   else  
   {  
    i  =  i-j+1;  
    j  =  0;    
   }  
  }  
  if(j  >=  plen)  
  {  
   return  (i-plen);  
  }  
  else  
  {  
   return  -1;  
  }  
 }  

  
可見,在樸素的模式匹配算法中,當(dāng)模式中的p[j]與主串中的s[i]不匹配時,需要把主串的指針回溯到i-j+1的地方從新用s[i-j+1]跟p[0]進行匹配比較。KMP算法的想法是,能不能不回溯主串的指針呢?這種想法基于如下事實的:p[j]!=s[i]前,p[0]~p[j-1]跟s[i-j]~s[i-1]是匹配的(這里j>0,也就是說在不匹配前已經(jīng)有匹配的字符了。否則如果j=0,則主串指針肯定不用回溯,直接向前變成i+1再跟p[0]比較就是了) 
  
p[j]!=s[i]前,p[0]~p[j-1]跟s[i-j]~s[i-1]是匹配的,這說明了什么呢?這說明可以通過分析模式的p[0]~p[j-1]來分析s[i-j]~s[i-1]。如果模式中存在p[0]~p[k-1]=p[j-k]~p[j-1](共k個匹配的字符,且k是滿足這個關(guān)系的最大值),則可以知道s[i-k]~s[j-1]跟[0]~p[k-1]是匹配的,那么,s[i]只需要跟p[k]進行比較就行了。而這個k是跟主串無關(guān)的,只需要分析模式串就可以求出來(這就是普通的教材中next[j]=k這個假設(shè)的由來,普通教材中總喜歡假設(shè)這個k值已經(jīng)有了,如果你邏輯思維強還沒有什么,不然或多或少會把你卡在這的)。亦即next[j]=k。 
  
如果上述的p[0]~p[k-1]=p[j-k]~p[j-1]串不存在會怎么樣呢?這說明p[j]前的串中不存在p[0]...=...p[j-1]的情況,就連p[0]也不等于p[j-1],也就是說p[0]~p[j-1]中所有以p[j-1]為結(jié)尾的子串跟模式p都是失配的。基于上面p[0]~p[j-1]=s[i-j]~s[i-1]的事實,可以斷定s[i-j]~s[i-1]中所有以s[i-1]結(jié)尾的子串跟模式p都是失配,這說明把主串的指針回溯到i-j+1~i-1都是沒有必要的,既然沒有必要回溯,而s[i]!=p[j],則s[i只能跟p[0]進行比較匹配了。亦即next[j]=0。 
  
特殊情況下,j=0,即s[i]!=p[0],這時不用再用s[i]來跟p中的其它字符比較了,變成用s[i+1]跟p[0]進行比較。為了統(tǒng)一,可以讓next[0]=-1。在下一輪的比較中,判斷到j(luò)=-1的情況時,讓i=i+1,j=j+1,自然就形成s[i+1]跟p[0]比較的效果了。  
 
KMP算法實現(xiàn)示例

具體請看如下程序:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX 101


void get_next( int *next,char *a,int la) /*求NEXT[]的值*/
{
   int i=1,j=0 ;
   next[1] = 0 ;
   
   while ( i <= la) /*核心部分*/
   {
      if( a[i] == a[j] || j == 0 )
      {
        j ++ ;
        i ++ ;
        if( a[i] == a[j])
        next[i] = next[j];
        else
        next[i] = j ;
      }
      else
      j = next[j] ;
   }
}

int str_kmp( int *next, char *A ,char *a, int lA,int la)/* EASY*/
{
   int i,j,k ;
   i = 1 ;
   j = 1 ;
   while ( i<=lA && j <= la )
   {
      if(A[i] == a[j] || j == 0 )
      {
          i ++ ;
          j ++ ;
      }
      else
      j = next[j] ;
   }
   
   if ( j> la)
   return i-j+1 ;
   else
   return -1 ;
}

int main(void)
{
  int n,k;
  int next[MAX]={0} ;
  int lA=0,la =0 ;
  char A[MAX],a[MAX] ;
  scanf("%s %s",A,a) ;
  
  lA = strlen(A);
  la = strlen(a);
  for(k=la-1; k>= 0 ;k --)
  a[k+1] = a[k] ;
  for(k=lA-1; k>= 0 ;k --)
  A[k+1] = A[k] ;
  
  get_next(next,a,la) ;
  k = str_kmp(next,A,a,lA,la);
  if ( -1 == k)
  printf("Not Soulation!!! ");
  else
  printf("%d ",k) ;
  system("pause");
  
  return 0 ;
}

相關(guān)文章

最新評論