Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Client獲得Server遠(yuǎn)程接口過程源代碼分析
在上一篇文章中,我們分析了Android系統(tǒng)進(jìn)程間通信機(jī)制Binder中的Server在啟動(dòng)過程使用Service Manager的addService接口把自己添加到Service Manager守護(hù)過程中接受管理。在這一篇文章中,我們將深入到Binder驅(qū)動(dòng)程序源代碼去分析Client是如何通過Service Manager的getService接口中來獲得Server遠(yuǎn)程接口的。Client只有獲得了Server的遠(yuǎn)程接口之后,才能進(jìn)一步調(diào)用Server提供的服務(wù)。
這里,我們?nèi)匀皇峭ㄟ^Android系統(tǒng)中自帶的多媒體播放器為例子來說明Client是如何通過IServiceManager::getService接口來獲得MediaPlayerService這個(gè)Server的遠(yuǎn)程接口的。假設(shè)計(jì)讀者已經(jīng)閱讀過前面三篇文章淺談Service Manager成為Android進(jìn)程間通信(IPC)機(jī)制Binder守護(hù)進(jìn)程之路、淺談Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server和Client獲得Service Manager接口之路和Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過程源代碼分析,即假設(shè)Service Manager和MediaPlayerService已經(jīng)啟動(dòng)完畢,Service Manager現(xiàn)在等待Client的請(qǐng)求。
這里,我們要舉例子說明的Client便是MediaPlayer了,它聲明和實(shí)現(xiàn)在frameworks/base/include/media/mediaplayer.h和frameworks/base/media/libmedia/mediaplayer.cpp文件中。MediaPlayer繼承于IMediaDeathNotifier類,這個(gè)類聲明和實(shí)現(xiàn)在frameworks/base/include/media/IMediaDeathNotifier.h和frameworks/base/media/libmedia//IMediaDeathNotifier.cpp文件中,里面有一個(gè)靜態(tài)成員函數(shù)getMeidaPlayerService,它通過IServiceManager::getService接口來獲得MediaPlayerService的遠(yuǎn)程接口。
在介紹IMediaDeathNotifier::getMeidaPlayerService函數(shù)之前,我們先了解一下這個(gè)函數(shù)的目標(biāo)??磥砬懊?a target="_blank" href="http://www.dbjr.com.cn/article/91464.htm">淺談Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server和Client獲得Service Manager接口之路這篇文章的讀者知道,我們?cè)讷@取Service Manager遠(yuǎn)程接口時(shí),最終是獲得了一個(gè)BpServiceManager對(duì)象的IServiceManager接口。類似地,我們要獲得MediaPlayerService的遠(yuǎn)程接口,實(shí)際上就是要獲得一個(gè)稱為BpMediaPlayerService對(duì)象的IMediaPlayerService接口?,F(xiàn)在,我們就先來看一下BpMediaPlayerService的類圖:
從這個(gè)類圖可以看到,BpMediaPlayerService繼承于BpInterface<IMediaPlayerService>類,即BpMediaPlayerService繼承了IMediaPlayerService類和BpRefBase類,這兩個(gè)類又分別繼續(xù)了RefBase類。BpRefBase類有一個(gè)成員變量mRemote,它的類型為IBinder,實(shí)際是一個(gè)BpBinder對(duì)象。BpBinder類使用了IPCThreadState類來與Binder驅(qū)動(dòng)程序進(jìn)行交互,而IPCThreadState類有一個(gè)成員變量mProcess,它的類型為ProcessState,IPCThreadState類借助ProcessState類來打開Binder設(shè)備文件/dev/binder,因此,它可以和Binder驅(qū)動(dòng)程序進(jìn)行交互。
BpMediaPlayerService的構(gòu)造函數(shù)有一個(gè)參數(shù)impl,它的類型為const sp<IBinder>&,從上面的描述中,這個(gè)實(shí)際上就是一個(gè)BpBinder對(duì)象。這樣,要?jiǎng)?chuàng)建一個(gè)BpMediaPlayerService對(duì)象,首先就要有一個(gè)BpBinder對(duì)象。再來看BpBinder類的構(gòu)造函數(shù),它有一個(gè)參數(shù)handle,類型為int32_t,這個(gè)參數(shù)的意義就是請(qǐng)求MediaPlayerService這個(gè)遠(yuǎn)程接口的進(jìn)程對(duì)MediaPlayerService這個(gè)Binder實(shí)體的引用了。因此,獲取MediaPlayerService這個(gè)遠(yuǎn)程接口的本質(zhì)問題就變?yōu)閺腟ervice Manager中獲得MediaPlayerService的一個(gè)句柄了。
現(xiàn)在,我們就來看一下IMediaDeathNotifier::getMeidaPlayerService的實(shí)現(xiàn):
// establish binder interface to MediaPlayerService /*static*/const sp<IMediaPlayerService>& IMediaDeathNotifier::getMediaPlayerService() { LOGV("getMediaPlayerService"); Mutex::Autolock _l(sServiceLock); if (sMediaPlayerService.get() == 0) { sp<IServiceManager> sm = defaultServiceManager(); sp<IBinder> binder; do { binder = sm->getService(String16("media.player")); if (binder != 0) { break; } LOGW("Media player service not published, waiting..."); usleep(500000); // 0.5 s } while(true); if (sDeathNotifier == NULL) { sDeathNotifier = new DeathNotifier(); } binder->linkToDeath(sDeathNotifier); sMediaPlayerService = interface_cast<IMediaPlayerService>(binder); } LOGE_IF(sMediaPlayerService == 0, "no media player service!?"); return sMediaPlayerService; }
函數(shù)首先通過defaultServiceManager函數(shù)來獲得Service Manager的遠(yuǎn)程接口,實(shí)際上就是獲得BpServiceManager的IServiceManager接口,具體可以參考淺談Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server和Client獲得Service Manager接口之路一文??偟膩碚f,這里的語句:
sp<IServiceManager> sm = defaultServiceManager();
相當(dāng)于是:
sp<IServiceManager> sm = new BpServiceManager(new BpBinder(0));
這里的0表示Service Manager的遠(yuǎn)程接口的句柄值是0。
接下去的while循環(huán)是通過sm->getService接口來不斷嘗試獲得名稱為“media.player”的Service,即MediaPlayerService。為什么要通過這無窮循環(huán)來得MediaPlayerService呢?因?yàn)檫@時(shí)候MediaPlayerService可能還沒有啟動(dòng)起來,所以這里如果發(fā)現(xiàn)取回來的binder接口為NULL,就睡眠0.5秒,然后再嘗試獲取,這是獲取Service接口的標(biāo)準(zhǔn)做法。
我們來看一下BpServiceManager::getService的實(shí)現(xiàn):
class BpServiceManager : public BpInterface<IServiceManager> { ...... virtual sp<IBinder> getService(const String16& name) const { unsigned n; for (n = 0; n < 5; n++){ sp<IBinder> svc = checkService(name); if (svc != NULL) return svc; LOGI("Waiting for service %s...\n", String8(name).string()); sleep(1); } return NULL; } virtual sp<IBinder> checkService( const String16& name) const { Parcel data, reply; data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor()); data.writeString16(name); remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply); return reply.readStrongBinder(); } ...... };
BpServiceManager::getService通過BpServiceManager::checkService執(zhí)行操作。
在BpServiceManager::checkService中,首先是通過Parcel::writeInterfaceToken往data寫入一個(gè)RPC頭,這個(gè)我們?cè)贏ndroid系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過程源代碼分析一文已經(jīng)介紹過了,就是寫往data里面寫入了一個(gè)整數(shù)和一個(gè)字符串“android.os.IServiceManager”, Service Manager來處理CHECK_SERVICE_TRANSACTION請(qǐng)求之前,會(huì)先驗(yàn)證一下這個(gè)RPC頭,看看是否正確。接著再往data寫入一個(gè)字符串name,這里就是“media.player”了。回憶一下Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過程源代碼分析這篇文章,那里已經(jīng)往Service Manager中注冊(cè)了一個(gè)名字為“media.player”的MediaPlayerService。
這里的remote()返回的是一個(gè)BpBinder,具體可以參考淺談Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server和Client獲得Service Manager接口之路一文,于是,就進(jìn)行到BpBinder::transact函數(shù)了:
status_t BpBinder::transact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { // Once a binder has died, it will never come back to life. if (mAlive) { status_t status = IPCThreadState::self()->transact( mHandle, code, data, reply, flags); if (status == DEAD_OBJECT) mAlive = 0; return status; } return DEAD_OBJECT; }
這里的mHandle = 0,code = CHECK_SERVICE_TRANSACTION,flags = 0。
這里再進(jìn)入到IPCThread::transact函數(shù)中:
status_t IPCThreadState::transact(int32_t handle, uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { status_t err = data.errorCheck(); flags |= TF_ACCEPT_FDS; IF_LOG_TRANSACTIONS() { TextOutput::Bundle _b(alog); alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand " << handle << " / code " << TypeCode(code) << ": " << indent << data << dedent << endl; } if (err == NO_ERROR) { LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(), (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY"); err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL); } if (err != NO_ERROR) { if (reply) reply->setError(err); return (mLastError = err); } if ((flags & TF_ONE_WAY) == 0) { #if 0 if (code == 4) { // relayout LOGI(">>>>>> CALLING transaction 4"); } else { LOGI(">>>>>> CALLING transaction %d", code); } #endif if (reply) { err = waitForResponse(reply); } else { Parcel fakeReply; err = waitForResponse(&fakeReply); } #if 0 if (code == 4) { // relayout LOGI("<<<<<< RETURNING transaction 4"); } else { LOGI("<<<<<< RETURNING transaction %d", code); } #endif IF_LOG_TRANSACTIONS() { TextOutput::Bundle _b(alog); alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand " << handle << ": "; if (reply) alog << indent << *reply << dedent << endl; else alog << "(none requested)" << endl; } } else { err = waitForResponse(NULL, NULL); } return err; }
首先是調(diào)用函數(shù)writeTransactionData寫入將要傳輸?shù)臄?shù)據(jù)到IPCThreadState的成員變量mOut中去:
status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags, int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer) { binder_transaction_data tr; tr.target.handle = handle; tr.code = code; tr.flags = binderFlags; const status_t err = data.errorCheck(); if (err == NO_ERROR) { tr.data_size = data.ipcDataSize(); tr.data.ptr.buffer = data.ipcData(); tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t); tr.data.ptr.offsets = data.ipcObjects(); } else if (statusBuffer) { tr.flags |= TF_STATUS_CODE; *statusBuffer = err; tr.data_size = sizeof(status_t); tr.data.ptr.buffer = statusBuffer; tr.offsets_size = 0; tr.data.ptr.offsets = NULL; } else { return (mLastError = err); } mOut.writeInt32(cmd); mOut.write(&tr, sizeof(tr)); return NO_ERROR; }
結(jié)構(gòu)體binder_transaction_data在上一篇文章Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過程源代碼分析已經(jīng)介紹過,這里不再累述,這個(gè)結(jié)構(gòu)體是用來描述要傳輸?shù)膮?shù)的內(nèi)容的。這里著重描述一下將要傳輸?shù)膮?shù)tr里面的內(nèi)容,handle = 0,code = CHECK_SERVICE_TRANSACTION,cmd = BC_TRANSACTION,data里面的數(shù)據(jù)分別為:
writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER); writeString16("android.os.IServiceManager"); writeString16("media.player");
這是在BpServiceManager::checkService函數(shù)里面寫進(jìn)去的,其中前兩個(gè)是RPC頭,Service Manager在收到這個(gè)請(qǐng)求時(shí)會(huì)驗(yàn)證這兩個(gè)參數(shù)是否正確,這點(diǎn)前面也提到了。IPCThread->getStrictModePolicy默認(rèn)返回0,STRICT_MODE_PENALTY_GATHER定義為:
// Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
#define STRICT_MODE_PENALTY_GATHER 0x100
我們不關(guān)心這個(gè)參數(shù)的含義,這不會(huì)影響我們分析下面的源代碼,有興趣的讀者可以研究一下。這里要注意的是,要傳輸?shù)膮?shù)不包含有Binder對(duì)象,因此tr.offsets_size = 0。要傳輸?shù)膮?shù)最后寫入到IPCThreadState的成員變量mOut中,包括cmd和tr兩個(gè)數(shù)據(jù)。
回到IPCThread::transact函數(shù)中,由于(flags & TF_ONE_WAY) == 0為true,即這是一個(gè)同步請(qǐng)求,并且reply != NULL,
最終調(diào)用:
err = waitForResponse(reply);
進(jìn)入到waitForResponse函數(shù)中:
status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { int32_t cmd; int32_t err; while (1) { if ((err=talkWithDriver()) < NO_ERROR) break; err = mIn.errorCheck(); if (err < NO_ERROR) break; if (mIn.dataAvail() == 0) continue; cmd = mIn.readInt32(); IF_LOG_COMMANDS() { alog << "Processing waitForResponse Command: " << getReturnString(cmd) << endl; } switch (cmd) { case BR_TRANSACTION_COMPLETE: if (!reply && !acquireResult) goto finish; break; case BR_DEAD_REPLY: err = DEAD_OBJECT; goto finish; case BR_FAILED_REPLY: err = FAILED_TRANSACTION; goto finish; case BR_ACQUIRE_RESULT: { LOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT"); const int32_t result = mIn.readInt32(); if (!acquireResult) continue; *acquireResult = result ? NO_ERROR : INVALID_OPERATION; } goto finish; case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr, sizeof(tr)); LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); if (err != NO_ERROR) goto finish; if (reply) { if ((tr.flags & TF_STATUS_CODE) == 0) { reply->ipcSetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), freeBuffer, this); } else { err = *static_cast<const status_t*>(tr.data.ptr.buffer); freeBuffer(NULL, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), this); } } else { freeBuffer(NULL, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), this); continue; } } goto finish; default: err = executeCommand(cmd); if (err != NO_ERROR) goto finish; break; } } finish: if (err != NO_ERROR) { if (acquireResult) *acquireResult = err; if (reply) reply->setError(err); mLastError = err; } return err; }
這個(gè)函數(shù)通過IPCThreadState::talkWithDriver與驅(qū)動(dòng)程序進(jìn)行交互:
status_t IPCThreadState::talkWithDriver(bool doReceive) { LOG_ASSERT(mProcess->mDriverFD >= 0, "Binder driver is not opened"); binder_write_read bwr; // Is the read buffer empty? const bool needRead = mIn.dataPosition() >= mIn.dataSize(); // We don't want to write anything if we are still reading // from data left in the input buffer and the caller // has requested to read the next data. const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0; bwr.write_size = outAvail; bwr.write_buffer = (long unsigned int)mOut.data(); // This is what we'll read. if (doReceive && needRead) { bwr.read_size = mIn.dataCapacity(); bwr.read_buffer = (long unsigned int)mIn.data(); } else { bwr.read_size = 0; } ...... // Return immediately if there is nothing to do. if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR; bwr.write_consumed = 0; bwr.read_consumed = 0; status_t err; do { ...... #if defined(HAVE_ANDROID_OS) if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0) err = NO_ERROR; else err = -errno; #else err = INVALID_OPERATION; #endif ...... } while (err == -EINTR); ...... if (err >= NO_ERROR) { if (bwr.write_consumed > 0) { if (bwr.write_consumed < (ssize_t)mOut.dataSize()) mOut.remove(0, bwr.write_consumed); else mOut.setDataSize(0); } if (bwr.read_consumed > 0) { mIn.setDataSize(bwr.read_consumed); mIn.setDataPosition(0); } ...... return NO_ERROR; } return err; }
這里的needRead為true,因此,bwr.read_size大于0;outAvail也大于0,因此,bwr.write_size也大于0。函數(shù)最后通過:
ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)
進(jìn)入到Binder驅(qū)動(dòng)程序的binder_ioctl函數(shù)中。注意,這里的mProcess->mDriverFD是在我們前面調(diào)用defaultServiceManager函數(shù)獲得Service Manager遠(yuǎn)程接口時(shí),打開的設(shè)備文件/dev/binder的文件描述符,mProcess是IPCSThreadState的成員變量。
Binder驅(qū)動(dòng)程序的binder_ioctl函數(shù)中,我們只關(guān)注BINDER_WRITE_READ命令相關(guān)的邏輯:
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int ret; struct binder_proc *proc = filp->private_data; struct binder_thread *thread; unsigned int size = _IOC_SIZE(cmd); void __user *ubuf = (void __user *)arg; /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2); if (ret) return ret; mutex_lock(&binder_lock); thread = binder_get_thread(proc); if (thread == NULL) { ret = -ENOMEM; goto err; } switch (cmd) { case BINDER_WRITE_READ: { struct binder_write_read bwr; if (size != sizeof(struct binder_write_read)) { ret = -EINVAL; goto err; } if (copy_from_user(&bwr, ubuf, sizeof(bwr))) { ret = -EFAULT; goto err; } if (binder_debug_mask & BINDER_DEBUG_READ_WRITE) printk(KERN_INFO "binder: %d:%d write %ld at %08lx, read %ld at %08lx\n", proc->pid, thread->pid, bwr.write_size, bwr.write_buffer, bwr.read_size, bwr.read_buffer); if (bwr.write_size > 0) { ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed); if (ret < 0) { bwr.read_consumed = 0; if (copy_to_user(ubuf, &bwr, sizeof(bwr))) ret = -EFAULT; goto err; } } if (bwr.read_size > 0) { ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK); if (!list_empty(&proc->todo)) wake_up_interruptible(&proc->wait); if (ret < 0) { if (copy_to_user(ubuf, &bwr, sizeof(bwr))) ret = -EFAULT; goto err; } } if (binder_debug_mask & BINDER_DEBUG_READ_WRITE) printk(KERN_INFO "binder: %d:%d wrote %ld of %ld, read return %ld of %ld\n", proc->pid, thread->pid, bwr.write_consumed, bwr.write_size, bwr.read_consumed, bwr.read_size); if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { ret = -EFAULT; goto err; } break; } ...... default: ret = -EINVAL; goto err; } ret = 0; err: ...... return ret; }
這里的filp->private_data的值是在defaultServiceManager函數(shù)創(chuàng)建ProcessState對(duì)象時(shí),在ProcessState構(gòu)造函數(shù)通過open文件操作函數(shù)打開設(shè)備文件/dev/binder時(shí)設(shè)置好的,它表示的是調(diào)用open函數(shù)打開設(shè)備文件/dev/binder的進(jìn)程上下文信息,這里將它取出來保存在proc本地變量中。
這里的thread本地變量表示當(dāng)前線程上下文信息,通過binder_get_thread函數(shù)獲得。在前面執(zhí)行ProcessState構(gòu)造函數(shù)時(shí),也會(huì)通過ioctl文件操作函數(shù)進(jìn)入到這個(gè)函數(shù),那是第一次進(jìn)入到binder_ioctl這里,因此,調(diào)用binder_get_thread時(shí),表示當(dāng)前進(jìn)程上下文信息的proc變量還沒有關(guān)于當(dāng)前線程的上下文信息,因此,會(huì)為proc創(chuàng)建一個(gè)表示當(dāng)前線程上下文信息的thread,會(huì)保存在proc->threads表示的紅黑樹結(jié)構(gòu)中。這里調(diào)用binder_get_thread就可以直接從proc找到并返回了。
進(jìn)入到BINDER_WRITE_READ相關(guān)的邏輯。先看看BINDER_WRITE_READ的定義:
#define BINDER_WRITE_READ _IOWR('b', 1, struct binder_write_read)
這里可以看出,BINDER_WRITE_READ命令的參數(shù)類型為struct binder_write_read:
struct binder_write_read { signed long write_size; /* bytes to write */ signed long write_consumed; /* bytes consumed by driver */ unsigned long write_buffer; signed long read_size; /* bytes to read */ signed long read_consumed; /* bytes consumed by driver */ unsigned long read_buffer; };
這個(gè)結(jié)構(gòu)體的含義可以參考淺談Service Manager成為Android進(jìn)程間通信(IPC)機(jī)制Binder守護(hù)進(jìn)程之路一文。這里首先是通過copy_from_user函數(shù)把用戶傳進(jìn)來的參數(shù)的內(nèi)容拷貝到本地變量bwr中。
從上面的調(diào)用過程,我們知道,這里bwr.write_size是大于0的,因此進(jìn)入到binder_thread_write函數(shù)中,我們只關(guān)注BC_TRANSACTION相關(guān)的邏輯:
int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, void __user *buffer, int size, signed long *consumed) { uint32_t cmd; void __user *ptr = buffer + *consumed; void __user *end = buffer + size; while (ptr < end && thread->return_error == BR_OK) { if (get_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { binder_stats.bc[_IOC_NR(cmd)]++; proc->stats.bc[_IOC_NR(cmd)]++; thread->stats.bc[_IOC_NR(cmd)]++; } switch (cmd) { ...... case BC_TRANSACTION: case BC_REPLY: { struct binder_transaction_data tr; if (copy_from_user(&tr, ptr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); binder_transaction(proc, thread, &tr, cmd == BC_REPLY); break; } ...... default: printk(KERN_ERR "binder: %d:%d unknown command %d\n", proc->pid, thread->pid, cmd); return -EINVAL; } *consumed = ptr - buffer; } return 0; }
這里再次把用戶傳出來的參數(shù)拷貝到本地變量tr中,tr的類型為struct binder_transaction_data,這個(gè)就是前面我們?cè)贗PCThreadState::writeTransactionData寫入的內(nèi)容了。
接著進(jìn)入到binder_transaction函數(shù)中,不相關(guān)的代碼我們忽略掉:
static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply) { struct binder_transaction *t; struct binder_work *tcomplete; size_t *offp, *off_end; struct binder_proc *target_proc; struct binder_thread *target_thread = NULL; struct binder_node *target_node = NULL; struct list_head *target_list; wait_queue_head_t *target_wait; struct binder_transaction *in_reply_to = NULL; struct binder_transaction_log_entry *e; uint32_t return_error; ....... if (reply) { ...... } else { if (tr->target.handle) { ...... } else { target_node = binder_context_mgr_node; if (target_node == NULL) { return_error = BR_DEAD_REPLY; goto err_no_context_mgr_node; } } ...... target_proc = target_node->proc; if (target_proc == NULL) { return_error = BR_DEAD_REPLY; goto err_dead_binder; } if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) { ...... } } if (target_thread) { ...... } else { target_list = &target_proc->todo; target_wait = &target_proc->wait; } ...... /* TODO: reuse incoming transaction for reply */ t = kzalloc(sizeof(*t), GFP_KERNEL); if (t == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_t_failed; } binder_stats.obj_created[BINDER_STAT_TRANSACTION]++; tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); if (tcomplete == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_tcomplete_failed; } binder_stats.obj_created[BINDER_STAT_TRANSACTION_COMPLETE]++; t->debug_id = ++binder_last_id; ...... if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NULL; t->sender_euid = proc->tsk->cred->euid; t->to_proc = target_proc; t->to_thread = target_thread; t->code = tr->code; t->flags = tr->flags; t->priority = task_nice(current); t->buffer = binder_alloc_buf(target_proc, tr->data_size, tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); if (t->buffer == NULL) { return_error = BR_FAILED_REPLY; goto err_binder_alloc_buf_failed; } t->buffer->allow_user_free = 0; t->buffer->debug_id = t->debug_id; t->buffer->transaction = t; t->buffer->target_node = target_node; if (target_node) binder_inc_node(target_node, 1, 0, NULL); offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { ...... return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } ...... if (reply) { ...... } else if (!(t->flags & TF_ONE_WAY)) { BUG_ON(t->buffer->async_transaction != 0); t->need_reply = 1; t->from_parent = thread->transaction_stack; thread->transaction_stack = t; } else { ...... } t->work.type = BINDER_WORK_TRANSACTION; list_add_tail(&t->work.entry, target_list); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; list_add_tail(&tcomplete->entry, &thread->todo); if (target_wait) wake_up_interruptible(target_wait); return; ...... }
注意,這里的參數(shù)reply = 0,表示這是一個(gè)BC_TRANSACTION命令。
前面我們提到,傳給驅(qū)動(dòng)程序的handle值為0,即這里的tr->target.handle = 0,表示請(qǐng)求的目標(biāo)Binder對(duì)象是Service Manager,因此有:
target_node = binder_context_mgr_node; target_proc = target_node->proc; target_list = &target_proc->todo; target_wait = &target_proc->wait;
其中binder_context_mgr_node是在Service Manager通知Binder驅(qū)動(dòng)程序它是守護(hù)過程時(shí)創(chuàng)建的。
接著創(chuàng)建一個(gè)待完成事項(xiàng)tcomplete,它的類型為struct binder_work,這是等一會(huì)要保存在當(dāng)前線程的todo隊(duì)列去的,表示當(dāng)前線程有一個(gè)待完成的事務(wù)。緊跟著創(chuàng)建一個(gè)待處理事務(wù)t,它的類型為struct binder_transaction,這是等一會(huì)要存在到Service Manager的todo隊(duì)列去的,表示Service Manager當(dāng)前有一個(gè)事務(wù)需要處理。同時(shí),這個(gè)待處理事務(wù)t也要存放在當(dāng)前線程的待完成事務(wù)transaction_stack列表中去:
t->from_parent = thread->transaction_stack;
thread->transaction_stack = t;
這樣表明當(dāng)前線程還有事務(wù)要處理。
繼續(xù)往下看,就是分別把tcomplete和t放在當(dāng)前線程thread和Service Manager進(jìn)程的todo隊(duì)列去了:
t->work.type = BINDER_WORK_TRANSACTION; list_add_tail(&t->work.entry, target_list); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; list_add_tail(&tcomplete->entry, &thread->todo);
最后,Service Manager有事情可做了,就要喚醒它了:
wake_up_interruptible(target_wait);
前面我們提到,此時(shí)Service Manager正在等待Client的請(qǐng)求,也就是Service Manager此時(shí)正在進(jìn)入到Binder驅(qū)動(dòng)程序的binder_thread_read函數(shù)中,并且休眠在target->wait上,具體參考淺談Service Manager成為Android進(jìn)程間通信(IPC)機(jī)制Binder守護(hù)進(jìn)程之路一文。
這里,我們暫時(shí)忽略Service Manager被喚醒之后的情景,繼續(xù)看當(dāng)前線程的執(zhí)行。
函數(shù)binder_transaction執(zhí)行完成之后,就一路返回到binder_ioctl函數(shù)里去了。函數(shù)binder_ioctl從binder_thread_write函數(shù)調(diào)用處返回后,發(fā)現(xiàn)bwr.read_size大于0,于是就進(jìn)入到binder_thread_read函數(shù)去了:
static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, void __user *buffer, int size, signed long *consumed, int non_block) { void __user *ptr = buffer + *consumed; void __user *end = buffer + size; int ret = 0; int wait_for_proc_work; if (*consumed == 0) { if (put_user(BR_NOOP, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); } retry: wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); ...... if (wait_for_proc_work) { ...... } else { if (non_block) { if (!binder_has_thread_work(thread)) ret = -EAGAIN; } else ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread)); } ...... while (1) { uint32_t cmd; struct binder_transaction_data tr; struct binder_work *w; struct binder_transaction *t = NULL; if (!list_empty(&thread->todo)) w = list_first_entry(&thread->todo, struct binder_work, entry); else if (!list_empty(&proc->todo) && wait_for_proc_work) w = list_first_entry(&proc->todo, struct binder_work, entry); else { if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ goto retry; break; } if (end - ptr < sizeof(tr) + 4) break; switch (w->type) { ...... case BINDER_WORK_TRANSACTION_COMPLETE: { cmd = BR_TRANSACTION_COMPLETE; if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); binder_stat_br(proc, thread, cmd); if (binder_debug_mask & BINDER_DEBUG_TRANSACTION_COMPLETE) printk(KERN_INFO "binder: %d:%d BR_TRANSACTION_COMPLETE\n", proc->pid, thread->pid); list_del(&w->entry); kfree(w); binder_stats.obj_deleted[BINDER_STAT_TRANSACTION_COMPLETE]++; } break; ...... } if (!t) continue; ...... } done: ...... return 0; }
函數(shù)首先是寫入一個(gè)操作碼BR_NOOP到用戶傳進(jìn)來的緩沖區(qū)中去。
回憶一下上面的binder_transaction函數(shù),這里的thread->transaction_stack != NULL,并且thread->todo也不為空,所以線程不會(huì)進(jìn)入休眠狀態(tài)。
進(jìn)入while循環(huán)中,首先是從thread->todo隊(duì)列中取回待處理事項(xiàng)w,w的類型為BINDER_WORK_TRANSACTION_COMPLETE,這也是在binder_transaction函數(shù)里面設(shè)置的。對(duì)BINDER_WORK_TRANSACTION_COMPLETE的處理也很簡單,只是把一個(gè)操作碼BR_TRANSACTION_COMPLETE寫回到用戶傳進(jìn)來的緩沖區(qū)中去。這時(shí)候,用戶傳進(jìn)來的緩沖區(qū)就包含兩個(gè)操作碼了,分別是BR_NOOP和BINDER_WORK_TRANSACTION_COMPLETE。
binder_thread_read執(zhí)行完之后,返回到binder_ioctl函數(shù)中,將操作結(jié)果寫回到用戶空間中去:
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { ret = -EFAULT; goto err; }
最后就返回到IPCThreadState::talkWithDriver函數(shù)中了。
IPCThreadState::talkWithDriver函數(shù)從下面語句:
ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)
返回后,首先是清空之前寫入Binder驅(qū)動(dòng)程序的內(nèi)容:
if (bwr.write_consumed > 0) { if (bwr.write_consumed < (ssize_t)mOut.dataSize()) mOut.remove(0, bwr.write_consumed); else mOut.setDataSize(0); }
接著是設(shè)置從Binder驅(qū)動(dòng)程序讀取的內(nèi)容:
if (bwr.read_consumed > 0) { mIn.setDataSize(bwr.read_consumed); mIn.setDataPosition(0); }
然后就返回到IPCThreadState::waitForResponse去了。IPCThreadState::waitForResponse函數(shù)的處理也很簡單,就是處理剛才從Binder驅(qū)動(dòng)程序讀入內(nèi)容了。從前面的分析中,我們知道,從Binder驅(qū)動(dòng)程序讀入的內(nèi)容就是兩個(gè)整數(shù)了,分別是BR_NOOP和BR_TRANSACTION_COMPLETE。對(duì)BR_NOOP的處理很簡單,正如它的名字所示,什么也不做;而對(duì)BR_TRANSACTION_COMPLETE的處理,就分情況了,如果這個(gè)請(qǐng)求是異步的,那個(gè)整個(gè)BC_TRANSACTION操作就完成了,如果這個(gè)請(qǐng)求是同步的,即要等待回復(fù)的,也就是reply不為空,那么還要繼續(xù)通過IPCThreadState::talkWithDriver進(jìn)入到Binder驅(qū)動(dòng)程序中去等待BC_TRANSACTION操作的處理結(jié)果。
這里屬于后一種情況,于是再次通過IPCThreadState::talkWithDriver進(jìn)入到Binder驅(qū)動(dòng)程序的binder_ioctl函數(shù)中。不過這一次在binder_ioctl函數(shù)中,bwr.write_size等于0,而bwr.read_size大于0,于是再次進(jìn)入到binder_thread_read函數(shù)中。這時(shí)候thread->transaction_stack仍然不為NULL,不過thread->todo隊(duì)列已經(jīng)為空了,因?yàn)榍懊嫖覀円呀?jīng)處理過thread->todo隊(duì)列的內(nèi)容了,于是就通過下面語句:
ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));
進(jìn)入休眠狀態(tài)了,等待Service Manager的喚醒。
現(xiàn)在,我們終于可以回到Service Manager被喚醒之后的過程了。前面我們說過,Service Manager此時(shí)正在binder_thread_read函數(shù)中休眠中:
static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, void __user *buffer, int size, signed long *consumed, int non_block) { void __user *ptr = buffer + *consumed; void __user *end = buffer + size; int ret = 0; int wait_for_proc_work; if (*consumed == 0) { if (put_user(BR_NOOP, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); } retry: wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); ...... if (wait_for_proc_work) { ...... if (non_block) { if (!binder_has_proc_work(proc, thread)) ret = -EAGAIN; } else ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread)); } else { ...... } ...... while (1) { uint32_t cmd; struct binder_transaction_data tr; struct binder_work *w; struct binder_transaction *t = NULL; if (!list_empty(&thread->todo)) w = list_first_entry(&thread->todo, struct binder_work, entry); else if (!list_empty(&proc->todo) && wait_for_proc_work) w = list_first_entry(&proc->todo, struct binder_work, entry); else { if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ goto retry; break; } if (end - ptr < sizeof(tr) + 4) break; switch (w->type) { case BINDER_WORK_TRANSACTION: { t = container_of(w, struct binder_transaction, work); } break; ...... } if (!t) continue; BUG_ON(t->buffer == NULL); if (t->buffer->target_node) { struct binder_node *target_node = t->buffer->target_node; tr.target.ptr = target_node->ptr; tr.cookie = target_node->cookie; t->saved_priority = task_nice(current); if (t->priority < target_node->min_priority && !(t->flags & TF_ONE_WAY)) binder_set_nice(t->priority); else if (!(t->flags & TF_ONE_WAY) || t->saved_priority > target_node->min_priority) binder_set_nice(target_node->min_priority); cmd = BR_TRANSACTION; } else { ...... } tr.code = t->code; tr.flags = t->flags; tr.sender_euid = t->sender_euid; if (t->from) { struct task_struct *sender = t->from->proc->tsk; tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns); } else { ...... } tr.data_size = t->buffer->data_size; tr.offsets_size = t->buffer->offsets_size; tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (copy_to_user(ptr, &tr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); ...... list_del(&t->work.entry); t->buffer->allow_user_free = 1; if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { t->to_parent = thread->transaction_stack; t->to_thread = thread; thread->transaction_stack = t; } else { ...... } break; } done: *consumed = ptr - buffer; ...... return 0; }
這里就是從語句中喚醒了:
ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread));
Service Manager喚醒過來看,繼續(xù)往下執(zhí)行,進(jìn)入到while循環(huán)中。首先是從proc->todo中取回待處理事項(xiàng)w。這個(gè)事項(xiàng)w的類型是BINDER_WORK_TRANSACTION,這是上面調(diào)用binder_transaction的時(shí)候設(shè)置的,于是通過w得到待處理事務(wù)t:
t = container_of(w, struct binder_transaction, work);
接下來的內(nèi)容,就把cmd和t->buffer的內(nèi)容拷貝到用戶傳進(jìn)來的緩沖區(qū)去了,這里就是Service Manager從用戶空間傳進(jìn)來的緩沖區(qū)了:
if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (copy_to_user(ptr, &tr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr);
注意,這里先是把t->buffer的內(nèi)容拷貝到本地變量tr中,再拷貝到用戶空間緩沖區(qū)去。關(guān)于t->buffer內(nèi)容的拷貝,請(qǐng)參考Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過程源代碼分析一文,它的一個(gè)關(guān)鍵地方是Binder驅(qū)動(dòng)程序和Service Manager守護(hù)進(jìn)程共享了同一個(gè)物理內(nèi)存的內(nèi)容,拷貝的只是這個(gè)物理內(nèi)存在用戶空間的虛擬地址回去:
tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;
tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));
對(duì)于Binder驅(qū)動(dòng)程序這次操作來說,這個(gè)事項(xiàng)就算是處理完了,就要從todo隊(duì)列中刪除了:
list_del(&t->work.entry);
緊接著,還不放刪除這個(gè)事務(wù),因?yàn)樗€要等待Service Manager處理完成后,再進(jìn)一步處理,因此,放在thread->transaction_stack隊(duì)列中:
t->to_parent = thread->transaction_stack;
t->to_thread = thread;
thread->transaction_stack = t;
還要注意的一個(gè)地方是,上面寫入的cmd = BR_TRANSACTION,告訴Service Manager守護(hù)進(jìn)程,它要做什么事情,后面我們會(huì)看到相應(yīng)的分析。
這樣,binder_thread_read函數(shù)就處理完了,回到binder_ioctl函數(shù)中,同樣是操作結(jié)果寫回到用戶空間的緩沖區(qū)中去:
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { ret = -EFAULT; goto err; }
最后,就返回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函數(shù)去了:
void binder_loop(struct binder_state *bs, binder_handler func) { int res; struct binder_write_read bwr; unsigned readbuf[32]; bwr.write_size = 0; bwr.write_consumed = 0; bwr.write_buffer = 0; readbuf[0] = BC_ENTER_LOOPER; binder_write(bs, readbuf, sizeof(unsigned)); for (;;) { bwr.read_size = sizeof(readbuf); bwr.read_consumed = 0; bwr.read_buffer = (unsigned) readbuf; res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); if (res < 0) { LOGE("binder_loop: ioctl failed (%s)\n", strerror(errno)); break; } res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func); if (res == 0) { LOGE("binder_loop: unexpected reply?!\n"); break; } if (res < 0) { LOGE("binder_loop: io error %d %s\n", res, strerror(errno)); break; } } }
這里就是從下面的語句:
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
返回來了。接著就進(jìn)入binder_parse函數(shù)處理從Binder驅(qū)動(dòng)程序里面讀取出來的數(shù)據(jù):
int binder_parse(struct binder_state *bs, struct binder_io *bio, uint32_t *ptr, uint32_t size, binder_handler func) { int r = 1; uint32_t *end = ptr + (size / 4); while (ptr < end) { uint32_t cmd = *ptr++; switch(cmd) { ...... case BR_TRANSACTION: { struct binder_txn *txn = (void *) ptr; ...... if (func) { unsigned rdata[256/4]; struct binder_io msg; struct binder_io reply; int res; bio_init(&reply, rdata, sizeof(rdata), 4); bio_init_from_txn(&msg, txn); res = func(bs, txn, &msg, &reply); binder_send_reply(bs, &reply, txn->data, res); } ptr += sizeof(*txn) / sizeof(uint32_t); break; } ...... default: LOGE("parse: OOPS %d\n", cmd); return -1; } } return r; }
前面我們說過,Binder驅(qū)動(dòng)程序?qū)懭氲接脩艨臻g的緩沖區(qū)中的cmd為BR_TRANSACTION,因此,這里我們只關(guān)注BR_TRANSACTION相關(guān)的邏輯。
這里用到的兩個(gè)數(shù)據(jù)結(jié)構(gòu)struct binder_txn和struct binder_io可以參考前面一篇文章Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過程源代碼分析,這里就不復(fù)述了。
接著往下看,函數(shù)調(diào)bio_init來初始化reply變量:
void bio_init(struct binder_io *bio, void *data, uint32_t maxdata, uint32_t maxoffs) { uint32_t n = maxoffs * sizeof(uint32_t); if (n > maxdata) { bio->flags = BIO_F_OVERFLOW; bio->data_avail = 0; bio->offs_avail = 0; return; } bio->data = bio->data0 = data + n; bio->offs = bio->offs0 = data; bio->data_avail = maxdata - n; bio->offs_avail = maxoffs; bio->flags = 0; }
接著又調(diào)用bio_init_from_txn來初始化msg變量:
void bio_init_from_txn(struct binder_io *bio, struct binder_txn *txn) { bio->data = bio->data0 = txn->data; bio->offs = bio->offs0 = txn->offs; bio->data_avail = txn->data_size; bio->offs_avail = txn->offs_size / 4; bio->flags = BIO_F_SHARED; }
最后,真正進(jìn)行處理的函數(shù)是從參數(shù)中傳進(jìn)來的函數(shù)指針func,這里就是定義在frameworks/base/cmds/servicemanager/service_manager.c文件中的svcmgr_handler函數(shù):
int svcmgr_handler(struct binder_state *bs, struct binder_txn *txn, struct binder_io *msg, struct binder_io *reply) { struct svcinfo *si; uint16_t *s; unsigned len; void *ptr; uint32_t strict_policy; // LOGI("target=%p code=%d pid=%d uid=%d\n", // txn->target, txn->code, txn->sender_pid, txn->sender_euid); if (txn->target != svcmgr_handle) return -1; // Equivalent to Parcel::enforceInterface(), reading the RPC // header with the strict mode policy mask and the interface name. // Note that we ignore the strict_policy and don't propagate it // further (since we do no outbound RPCs anyway). strict_policy = bio_get_uint32(msg); s = bio_get_string16(msg, &len); if ((len != (sizeof(svcmgr_id) / 2)) || memcmp(svcmgr_id, s, sizeof(svcmgr_id))) { fprintf(stderr,"invalid id %s\n", str8(s)); return -1; } switch(txn->code) { case SVC_MGR_GET_SERVICE: case SVC_MGR_CHECK_SERVICE: s = bio_get_string16(msg, &len); ptr = do_find_service(bs, s, len); if (!ptr) break; bio_put_ref(reply, ptr); return 0; ...... } default: LOGE("unknown code %d\n", txn->code); return -1; } bio_put_uint32(reply, 0); return 0; }
這里, Service Manager要處理的code是SVC_MGR_CHECK_SERVICE,這是在前面的BpServiceManager::checkService函數(shù)里面設(shè)置的。
回憶一下,在BpServiceManager::checkService時(shí),傳給Binder驅(qū)動(dòng)程序的參數(shù)為:
writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER);
writeString16("android.os.IServiceManager");
writeString16("media.player");
這里的語句:
strict_policy = bio_get_uint32(msg); s = bio_get_string16(msg, &len); s = bio_get_string16(msg, &len);
其中,會(huì)驗(yàn)證一下傳進(jìn)來的第二個(gè)參數(shù),即"android.os.IServiceManager"是否正確,這個(gè)是驗(yàn)證RPC頭,注釋已經(jīng)說得很清楚了。
最后,就是調(diào)用do_find_service函數(shù)查找是存在名稱為"media.player"的服務(wù)了。回憶一下前面一篇文章Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過程源代碼分析,MediaPlayerService已經(jīng)把一個(gè)名稱為"media.player"的服務(wù)注冊(cè)到Service Manager中,所以這里一定能找到。我們看看do_find_service這個(gè)函數(shù):
void *do_find_service(struct binder_state *bs, uint16_t *s, unsigned len) { struct svcinfo *si; si = find_svc(s, len); // LOGI("check_service('%s') ptr = %p\n", str8(s), si ? si->ptr : 0); if (si && si->ptr) { return si->ptr; } else { return 0; } }
這里又調(diào)用了find_svc函數(shù):
struct svcinfo *find_svc(uint16_t *s16, unsigned len) { struct svcinfo *si; for (si = svclist; si; si = si->next) { if ((len == si->len) && !memcmp(s16, si->name, len * sizeof(uint16_t))) { return si; } } return 0; }
就是在svclist列表中查找對(duì)應(yīng)名稱的svcinfo了。
然后返回到do_find_service函數(shù)中?;貞浺幌虑懊嬉黄恼翧ndroid系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過程源代碼分析,這里的si->ptr就是指MediaPlayerService這個(gè)Binder實(shí)體在Service Manager進(jìn)程中的句柄值了。
回到svcmgr_handler函數(shù)中,調(diào)用bio_put_ref函數(shù)將這個(gè)Binder引用寫回到reply參數(shù)。我們看看bio_put_ref的實(shí)現(xiàn):
void bio_put_ref(struct binder_io *bio, void *ptr) { struct binder_object *obj; if (ptr) obj = bio_alloc_obj(bio); else obj = bio_alloc(bio, sizeof(*obj)); if (!obj) return; obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; obj->type = BINDER_TYPE_HANDLE; obj->pointer = ptr; obj->cookie = 0; }
這里很簡單,就是把一個(gè)類型為BINDER_TYPE_HANDLE的binder_object寫入到reply緩沖區(qū)中去。這里的binder_object就是相當(dāng)于是flat_binder_obj了,具體可以參考Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過程源代碼分析一文。
再回到svcmgr_handler函數(shù)中,最后,還寫入一個(gè)0值到reply緩沖區(qū)中,表示操作結(jié)果碼:
bio_put_uint32(reply, 0);
最后返回到binder_parse函數(shù)中,調(diào)用binder_send_reply函數(shù)將操作結(jié)果反饋給Binder驅(qū)動(dòng)程序:
void binder_send_reply(struct binder_state *bs, struct binder_io *reply, void *buffer_to_free, int status) { struct { uint32_t cmd_free; void *buffer; uint32_t cmd_reply; struct binder_txn txn; } __attribute__((packed)) data; data.cmd_free = BC_FREE_BUFFER; data.buffer = buffer_to_free; data.cmd_reply = BC_REPLY; data.txn.target = 0; data.txn.cookie = 0; data.txn.code = 0; if (status) { data.txn.flags = TF_STATUS_CODE; data.txn.data_size = sizeof(int); data.txn.offs_size = 0; data.txn.data = &status; data.txn.offs = 0; } else { data.txn.flags = 0; data.txn.data_size = reply->data - reply->data0; data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0); data.txn.data = reply->data0; data.txn.offs = reply->offs0; } binder_write(bs, &data, sizeof(data)); }
注意,這里的status參數(shù)為0。從這里可以看出,binder_send_reply告訴Binder驅(qū)動(dòng)程序執(zhí)行BC_FREE_BUFFER和BC_REPLY命令,前者釋放之前在binder_transaction分配的空間,地址為buffer_to_free,buffer_to_free這個(gè)地址是Binder驅(qū)動(dòng)程序把自己在內(nèi)核空間用的地址轉(zhuǎn)換成用戶空間地址再傳給Service Manager的,所以Binder驅(qū)動(dòng)程序拿到這個(gè)地址后,知道怎么樣釋放這個(gè)空間;后者告訴Binder驅(qū)動(dòng)程序,它的SVC_MGR_CHECK_SERVICE操作已經(jīng)完成了,要查詢的服務(wù)的句柄值也是保存在data.txn.data,操作結(jié)果碼是0,也是保存在data.txn.data中。
再來看binder_write函數(shù):
int binder_write(struct binder_state *bs, void *data, unsigned len) { struct binder_write_read bwr; int res; bwr.write_size = len; bwr.write_consumed = 0; bwr.write_buffer = (unsigned) data; bwr.read_size = 0; bwr.read_consumed = 0; bwr.read_buffer = 0; res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); if (res < 0) { fprintf(stderr,"binder_write: ioctl failed (%s)\n", strerror(errno)); } return res; }
這里可以看出,只有寫操作,沒有讀操作,即read_size為0。
這里又是一個(gè)ioctl的BINDER_WRITE_READ操作。直入到驅(qū)動(dòng)程序的binder_ioctl函數(shù)后,執(zhí)行BINDER_WRITE_READ命令,這里就不累述了。
最后,從binder_ioctl執(zhí)行到binder_thread_write函數(shù),首先是執(zhí)行BC_FREE_BUFFER命令,這個(gè)命令的執(zhí)行在前面一篇文章Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過程源代碼分析已經(jīng)介紹過了,這里就不再累述了。
我們重點(diǎn)關(guān)注BC_REPLY命令的執(zhí)行:
int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, void __user *buffer, int size, signed long *consumed) { uint32_t cmd; void __user *ptr = buffer + *consumed; void __user *end = buffer + size; while (ptr < end && thread->return_error == BR_OK) { if (get_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { binder_stats.bc[_IOC_NR(cmd)]++; proc->stats.bc[_IOC_NR(cmd)]++; thread->stats.bc[_IOC_NR(cmd)]++; } switch (cmd) { ...... case BC_TRANSACTION: case BC_REPLY: { struct binder_transaction_data tr; if (copy_from_user(&tr, ptr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); binder_transaction(proc, thread, &tr, cmd == BC_REPLY); break; } ...... *consumed = ptr - buffer; } return 0; }
又再次進(jìn)入到binder_transaction函數(shù):
static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply) { struct binder_transaction *t; struct binder_work *tcomplete; size_t *offp, *off_end; struct binder_proc *target_proc; struct binder_thread *target_thread = NULL; struct binder_node *target_node = NULL; struct list_head *target_list; wait_queue_head_t *target_wait; struct binder_transaction *in_reply_to = NULL; struct binder_transaction_log_entry *e; uint32_t return_error; ...... if (reply) { in_reply_to = thread->transaction_stack; if (in_reply_to == NULL) { ...... return_error = BR_FAILED_REPLY; goto err_empty_call_stack; } ...... thread->transaction_stack = in_reply_to->to_parent; target_thread = in_reply_to->from; ...... target_proc = target_thread->proc; } else { ...... } if (target_thread) { e->to_thread = target_thread->pid; target_list = &target_thread->todo; target_wait = &target_thread->wait; } else { ...... } /* TODO: reuse incoming transaction for reply */ t = kzalloc(sizeof(*t), GFP_KERNEL); if (t == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_t_failed; } binder_stats.obj_created[BINDER_STAT_TRANSACTION]++; tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); if (tcomplete == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_tcomplete_failed; } ...... if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NULL; t->sender_euid = proc->tsk->cred->euid; t->to_proc = target_proc; t->to_thread = target_thread; t->code = tr->code; t->flags = tr->flags; t->priority = task_nice(current); t->buffer = binder_alloc_buf(target_proc, tr->data_size, tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); if (t->buffer == NULL) { return_error = BR_FAILED_REPLY; goto err_binder_alloc_buf_failed; } t->buffer->allow_user_free = 0; t->buffer->debug_id = t->debug_id; t->buffer->transaction = t; t->buffer->target_node = target_node; if (target_node) binder_inc_node(target_node, 1, 0, NULL); offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { binder_user_error("binder: %d:%d got transaction with invalid " "data ptr\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { binder_user_error("binder: %d:%d got transaction with invalid " "offsets ptr\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } ...... off_end = (void *)offp + tr->offsets_size; for (; offp < off_end; offp++) { struct flat_binder_object *fp; ...... fp = (struct flat_binder_object *)(t->buffer->data + *offp); switch (fp->type) { ...... case BINDER_TYPE_HANDLE: case BINDER_TYPE_WEAK_HANDLE: { struct binder_ref *ref = binder_get_ref(proc, fp->handle); if (ref == NULL) { ...... return_error = BR_FAILED_REPLY; goto err_binder_get_ref_failed; } if (ref->node->proc == target_proc) { ...... } else { struct binder_ref *new_ref; new_ref = binder_get_ref_for_node(target_proc, ref->node); if (new_ref == NULL) { return_error = BR_FAILED_REPLY; goto err_binder_get_ref_for_node_failed; } fp->handle = new_ref->desc; binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL); ...... } } break; ...... } } if (reply) { BUG_ON(t->buffer->async_transaction != 0); binder_pop_transaction(target_thread, in_reply_to); } else if (!(t->flags & TF_ONE_WAY)) { ...... } else { ...... } t->work.type = BINDER_WORK_TRANSACTION; list_add_tail(&t->work.entry, target_list); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; list_add_tail(&tcomplete->entry, &thread->todo); if (target_wait) wake_up_interruptible(target_wait); return; ...... }
這次進(jìn)入binder_transaction函數(shù)的情形和上面介紹的binder_transaction函數(shù)的情形基本一致,只是這里的proc、thread和target_proc、target_thread調(diào)換了角色,這里的proc和thread指的是Service Manager進(jìn)程,而target_proc和target_thread指的是剛才請(qǐng)求SVC_MGR_CHECK_SERVICE的進(jìn)程。
那么,這次是如何找到target_proc和target_thread呢。首先,我們注意到,這里的reply等于1,其次,上面我們提到,Binder驅(qū)動(dòng)程序在喚醒Service Manager,告訴它有一個(gè)事務(wù)t要處理時(shí),事務(wù)t雖然從Service Manager的todo隊(duì)列中刪除了,但是仍然保留在transaction_stack中。因此,這里可以從thread->transaction_stack找回這個(gè)等待回復(fù)的事務(wù)t,然后通過它找回target_proc和target_thread:
in_reply_to = thread->transaction_stack; target_thread = in_reply_to->from; target_list = &target_thread->todo; target_wait = &target_thread->wait;
再接著往下看,由于Service Manager返回來了一個(gè)Binder引用,所以這里要處理一下,就是中間的for循環(huán)了。這是一個(gè)BINDER_TYPE_HANDLE類型的Binder引用,這是前面設(shè)置的。先把t->buffer->data的內(nèi)容轉(zhuǎn)換為一個(gè)struct flat_binder_object對(duì)象fp,這里的fp->handle值就是這個(gè)Service在Service Manager進(jìn)程里面的引用值了。接通過調(diào)用binder_get_ref函數(shù)得到Binder引用對(duì)象struct binder_ref類型的對(duì)象ref:
struct binder_ref *ref = binder_get_ref(proc, fp->handle);
這里一定能找到,因?yàn)榍懊鍹ediaPlayerService執(zhí)行IServiceManager::addService的時(shí)候把自己添加到Service Manager的時(shí)候,會(huì)在Service Manager進(jìn)程中創(chuàng)建這個(gè)Binder引用,然后把這個(gè)Binder引用的句柄值返回給Service Manager用戶空間。
這里面的ref->node->proc不等于target_proc,因?yàn)檫@個(gè)Binder實(shí)體是屬于創(chuàng)建MediaPlayerService的進(jìn)程的,而不是請(qǐng)求這個(gè)服務(wù)的遠(yuǎn)程接口的進(jìn)程的,因此,這里調(diào)用binder_get_ref_for_node函數(shù)為這個(gè)Binder實(shí)體在target_proc創(chuàng)建一個(gè)引用:
struct binder_ref *new_ref; new_ref = binder_get_ref_for_node(target_proc, ref->node);
然后增加引用計(jì)數(shù):
binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL);
這樣,返回?cái)?shù)據(jù)中的Binder對(duì)象就處理完成了。注意,這里會(huì)把fp->handle的值改為在target_proc中的引用值:
fp->handle = new_ref->desc;
這里就相當(dāng)于是把t->buffer->data里面的Binder對(duì)象的句柄值改寫了。因?yàn)檫@是在另外一個(gè)不同的進(jìn)程里面的Binder引用,所以句柄值當(dāng)然要用新的了。這個(gè)值最終是要拷貝回target_proc進(jìn)程的用戶空間去的。
再往下看:
if (reply) { BUG_ON(t->buffer->async_transaction != 0); binder_pop_transaction(target_thread, in_reply_to); } else if (!(t->flags & TF_ONE_WAY)) { ...... } else { ...... }
這里reply等于1,執(zhí)行binder_pop_transaction函數(shù)把當(dāng)前事務(wù)in_reply_to從target_thread->transaction_stack隊(duì)列中刪掉,這是上次調(diào)用binder_transaction函數(shù)的時(shí)候設(shè)置的,現(xiàn)在不需要了,所以把它刪掉。
再往后的邏輯就跟前面執(zhí)行binder_transaction函數(shù)時(shí)候一樣了,這里不再介紹。最后的結(jié)果就是喚醒請(qǐng)求SVC_MGR_CHECK_SERVICE操作的線程:
if (target_wait)
wake_up_interruptible(target_wait);
這樣,Service Manger回復(fù)調(diào)用SVC_MGR_CHECK_SERVICE請(qǐng)求就算完成了,重新回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函數(shù)等待下一個(gè)Client請(qǐng)求的到來。事實(shí)上,Service Manger回到binder_loop函數(shù)再次執(zhí)行ioctl函數(shù)時(shí)候,又會(huì)再次進(jìn)入到binder_thread_read函數(shù)。這時(shí)個(gè)會(huì)發(fā)現(xiàn)thread->todo不為空,這是因?yàn)閯偛盼覀冋{(diào)用了:
list_add_tail(&tcomplete->entry, &thread->todo);
把一個(gè)工作項(xiàng)tcompelete放在了在thread->todo中,這個(gè)tcompelete的type為BINDER_WORK_TRANSACTION_COMPLETE,因此,Binder驅(qū)動(dòng)程序會(huì)執(zhí)行下面操作:
switch (w->type) { case BINDER_WORK_TRANSACTION_COMPLETE: { cmd = BR_TRANSACTION_COMPLETE; if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); list_del(&w->entry); kfree(w); } break; ...... }
binder_loop函數(shù)執(zhí)行完這個(gè)ioctl調(diào)用后,才會(huì)在下一次調(diào)用ioctl進(jìn)入到Binder驅(qū)動(dòng)程序進(jìn)入休眠狀態(tài),等待下一次Client的請(qǐng)求。
上面講到調(diào)用請(qǐng)求SVC_MGR_CHECK_SERVICE操作的線程被喚醒了,于是,重新執(zhí)行binder_thread_read函數(shù):
static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, void __user *buffer, int size, signed long *consumed, int non_block) { void __user *ptr = buffer + *consumed; void __user *end = buffer + size; int ret = 0; int wait_for_proc_work; if (*consumed == 0) { if (put_user(BR_NOOP, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); } retry: wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); ...... if (wait_for_proc_work) { ...... } else { if (non_block) { if (!binder_has_thread_work(thread)) ret = -EAGAIN; } else ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread)); } ...... while (1) { uint32_t cmd; struct binder_transaction_data tr; struct binder_work *w; struct binder_transaction *t = NULL; if (!list_empty(&thread->todo)) w = list_first_entry(&thread->todo, struct binder_work, entry); else if (!list_empty(&proc->todo) && wait_for_proc_work) w = list_first_entry(&proc->todo, struct binder_work, entry); else { if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ goto retry; break; } ...... switch (w->type) { case BINDER_WORK_TRANSACTION: { t = container_of(w, struct binder_transaction, work); } break; ...... } if (!t) continue; BUG_ON(t->buffer == NULL); if (t->buffer->target_node) { ...... } else { tr.target.ptr = NULL; tr.cookie = NULL; cmd = BR_REPLY; } tr.code = t->code; tr.flags = t->flags; tr.sender_euid = t->sender_euid; if (t->from) { ...... } else { tr.sender_pid = 0; } tr.data_size = t->buffer->data_size; tr.offsets_size = t->buffer->offsets_size; tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (copy_to_user(ptr, &tr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); ...... list_del(&t->work.entry); t->buffer->allow_user_free = 1; if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { ...... } else { t->buffer->transaction = NULL; kfree(t); binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++; } break; } done: ...... return 0; }
就是從下面這個(gè)調(diào)用:
ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));
被喚醒過來了。在while循環(huán)中,從thread->todo得到w,w->type為BINDER_WORK_TRANSACTION,于是,得到t。從上面可以知道,Service Manager返回來了一個(gè)Binder引用和一個(gè)結(jié)果碼0回來,寫在t->buffer->data里面,現(xiàn)在把t->buffer->data加上proc->user_buffer_offset,得到用戶空間地址,保存在tr.data.ptr.buffer里面,這樣用戶空間就可以訪問這個(gè)數(shù)據(jù)了。由于cmd不等于BR_TRANSACTION,這時(shí)就可以把t刪除掉了,因?yàn)橐院蠖疾恍枰昧恕?br />
執(zhí)行完這個(gè)函數(shù)后,就返回到binder_ioctl函數(shù),執(zhí)行下面語句,把數(shù)據(jù)返回給用戶空間:
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { ret = -EFAULT; goto err; }
接著返回到用戶空間IPCThreadState::talkWithDriver函數(shù),最后返回到IPCThreadState::waitForResponse函數(shù),最終執(zhí)行到下面語句:
status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { int32_t cmd; int32_t err; while (1) { if ((err=talkWithDriver()) < NO_ERROR) break; ...... cmd = mIn.readInt32(); ...... switch (cmd) { ...... case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr, sizeof(tr)); LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); if (err != NO_ERROR) goto finish; if (reply) { if ((tr.flags & TF_STATUS_CODE) == 0) { reply->ipcSetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), freeBuffer, this); } else { ...... } } else { ...... } } goto finish; ...... } } finish: ...... return err; }
注意,這里的tr.flags等于0,這個(gè)是在上面的binder_send_reply函數(shù)里設(shè)置的。接著就把結(jié)果保存在reply了:
reply->ipcSetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), freeBuffer, this);
我們簡單看一下Parcel::ipcSetDataReference函數(shù)的實(shí)現(xiàn):
void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize, const size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie) { freeDataNoInit(); mError = NO_ERROR; mData = const_cast<uint8_t*>(data); mDataSize = mDataCapacity = dataSize; //LOGI("setDataReference Setting data size of %p to %lu (pid=%d)\n", this, mDataSize, getpid()); mDataPos = 0; LOGV("setDataReference Setting data pos of %p to %d\n", this, mDataPos); mObjects = const_cast<size_t*>(objects); mObjectsSize = mObjectsCapacity = objectsCount; mNextObjectHint = 0; mOwner = relFunc; mOwnerCookie = relCookie; scanForFds(); }
上面提到,返回來的數(shù)據(jù)中有一個(gè)Binder引用,因此,這里的mObjectSize等于1,這個(gè)Binder引用對(duì)應(yīng)的位置記錄在mObjects成員變量中。
從這里層層返回,最后回到BpServiceManager::checkService函數(shù)中:
virtual sp<IBinder> BpServiceManager::checkService( const String16& name) const { Parcel data, reply; data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor()); data.writeString16(name); remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply); return reply.readStrongBinder(); }
這里就是從:
remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);
返回來了。我們接著看一下reply.readStrongBinder函數(shù)的實(shí)現(xiàn):
sp<IBinder> Parcel::readStrongBinder() const { sp<IBinder> val; unflatten_binder(ProcessState::self(), *this, &val); return val; }
這里調(diào)用了unflatten_binder函數(shù)來構(gòu)造一個(gè)Binder對(duì)象:
status_t unflatten_binder(const sp<ProcessState>& proc, const Parcel& in, sp<IBinder>* out) { const flat_binder_object* flat = in.readObject(false); if (flat) { switch (flat->type) { case BINDER_TYPE_BINDER: *out = static_cast<IBinder*>(flat->cookie); return finish_unflatten_binder(NULL, *flat, in); case BINDER_TYPE_HANDLE: *out = proc->getStrongProxyForHandle(flat->handle); return finish_unflatten_binder( static_cast<BpBinder*>(out->get()), *flat, in); } } return BAD_TYPE; }
這里的flat->type是BINDER_TYPE_HANDLE,因此調(diào)用ProcessState::getStrongProxyForHandle函數(shù):
sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle) { sp<IBinder> result; AutoMutex _l(mLock); handle_entry* e = lookupHandleLocked(handle); if (e != NULL) { // We need to create a new BpBinder if there isn't currently one, OR we // are unable to acquire a weak reference on this current one. See comment // in getWeakProxyForHandle() for more info about this. IBinder* b = e->binder; if (b == NULL || !e->refs->attemptIncWeak(this)) { b = new BpBinder(handle); e->binder = b; if (b) e->refs = b->getWeakRefs(); result = b; } else { // This little bit of nastyness is to allow us to add a primary // reference to the remote proxy when this team doesn't have one // but another team is sending the handle to us. result.force_set(b); e->refs->decWeak(this); } } return result; }
這里我們可以看到,ProcessState會(huì)把使用過的Binder遠(yuǎn)程接口(BpBinder)緩存起來,這樣下次從Service Manager那里請(qǐng)求得到相同的句柄(Handle)時(shí)就可以直接返回這個(gè)Binder遠(yuǎn)程接口了,不用再創(chuàng)建一個(gè)出來。這里是第一次使用,因此,e->binder為空,于是創(chuàng)建了一個(gè)BpBinder對(duì)象:
b = new BpBinder(handle); e->binder = b; if (b) e->refs = b->getWeakRefs(); result = b;
最后,函數(shù)返回到IMediaDeathNotifier::getMediaPlayerService這里,從這個(gè)語句返回:
binder = sm->getService(String16("media.player"));
這里,就相當(dāng)于是:
binder = new BpBinder(handle);
最后,函數(shù)調(diào)用:
sMediaPlayerService = interface_cast<IMediaPlayerService>(binder);
到了這里,我們可以參考一下前面一篇文章淺談Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server和Client獲得Service Manager,就會(huì)知道,這里的interface_cast實(shí)際上最終調(diào)用了IMediaPlayerService::asInterface函數(shù):
android::sp<IMediaPlayerService> IMediaPlayerService::asInterface(const android::sp<android::IBinder>& obj) { android::sp<IServiceManager> intr; if (obj != NULL) { intr = static_cast<IMediaPlayerService*>( obj->queryLocalInterface(IMediaPlayerService::descriptor).get()); if (intr == NULL) { intr = new BpMediaPlayerService(obj); } } return intr; }
這里的obj就是BpBinder,而BpBinder::queryLocalInterface返回NULL,因此就創(chuàng)建了一個(gè)BpMediaPlayerService對(duì)象:
intr = new BpMediaPlayerService(new BpBinder(handle));
因此,我們最終就得到了一個(gè)BpMediaPlayerService對(duì)象,達(dá)到我們最初的目標(biāo)。
有了這個(gè)BpMediaPlayerService這個(gè)遠(yuǎn)程接口之后,MediaPlayer就可以調(diào)用MediaPlayerService的服務(wù)了。
至此,Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Client如何通過Service Manager的getService函數(shù)獲得Server遠(yuǎn)程接口的過程就分析完了,Binder機(jī)制的學(xué)習(xí)就暫告一段落了。
不過,細(xì)心的讀者可能會(huì)發(fā)現(xiàn),我們這里介紹的Binder機(jī)制都是基于C/C++語言實(shí)現(xiàn)的,但是我們?cè)诰帉憫?yīng)用程序都是基于Java語言的,那么,我們?nèi)绾问褂肑ava語言來使用系統(tǒng)的Binder機(jī)制來進(jìn)行進(jìn)程間通信呢?這就是下一篇文章要介紹的內(nèi)容了,敬請(qǐng)關(guān)注。
以上就是對(duì)Android IPC Binder Client獲得Server 遠(yuǎn)程接口過程的源碼分析,后續(xù)繼續(xù)補(bǔ)充相關(guān)文章,謝謝大家對(duì)本站的支持!
- Android 圖文詳解Binder進(jìn)程通信底層原理
- Android通過繼承Binder類實(shí)現(xiàn)多進(jìn)程通信
- Android系統(tǒng)進(jìn)程間通信Binder機(jī)制在應(yīng)用程序框架層的Java接口源代碼分析
- Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server啟動(dòng)過程源代碼分析
- Android系統(tǒng)進(jìn)程間通信(IPC)機(jī)制Binder中的Server和Client獲得Service Manager接口之路
- Android Binder 通信原理圖文詳解
相關(guān)文章
在不同Activity之間傳遞數(shù)據(jù)的四種常用方法
這篇文章主要介紹了在不同Activity之間傳遞數(shù)據(jù)的四種常用方法 的相關(guān)資料,需要的朋友可以參考下2016-03-03Android 中TextView中跑馬燈效果的實(shí)現(xiàn)方法
這篇文章主要介紹了Android 中TextView中跑馬燈效果的實(shí)現(xiàn)方法,非常不錯(cuò),具有參考借鑒價(jià)值,需要的朋友可以參考下2017-02-02使用adb命令向Android模擬器中導(dǎo)入通訊錄聯(lián)系人的方法
這篇文章主要介紹了使用adb命令向Android模擬器中導(dǎo)入通訊錄聯(lián)系人的方法,實(shí)例分析了導(dǎo)入通訊錄存儲(chǔ)文件的技巧,需要的朋友可以參考下2015-01-01Android基于ListView實(shí)現(xiàn)類似Market分頁加載效果示例
這篇文章主要介紹了Android基于ListView實(shí)現(xiàn)類似Market分頁加載效果,結(jié)合完整實(shí)例形式分析了ListView的OnScroll方法來實(shí)現(xiàn)分頁與滾動(dòng)加載的操作步驟與相關(guān)實(shí)現(xiàn)技巧,需要的朋友可以參考下2016-10-10Android實(shí)現(xiàn)獲取未接來電和未讀短信數(shù)量的方法
這篇文章主要介紹了Android實(shí)現(xiàn)獲取未接來電和未讀短信數(shù)量的方法,是Android程序開發(fā)中非常常見的重要功能,需要的朋友可以參考下2014-08-08