完整B樹算法Java實現(xiàn)代碼
定義
在計算機科學中,B樹(英語:B-tree)是一種自平衡的樹,能夠保持數(shù)據(jù)有序。這種數(shù)據(jù)結構能夠讓查找數(shù)據(jù)、順序訪問、插入數(shù)據(jù)及刪除的動作,都在對數(shù)時間內完成。
為什么要引入B樹?
首先,包括前面我們介紹的紅黑樹是將輸入存入內存的一種內部查找樹。
而B樹是前面平衡樹算法的擴展,它支持保存在磁盤或者網(wǎng)絡上的符號表進行外部查找,這些文件可能比我們以前考慮的輸入要大的多(難以存入內存)。
既然內容保存在磁盤中,那么自然會因為樹的深度過大而造成磁盤I/O讀寫過于頻繁(磁盤讀寫速率是有限制的),進而導致查詢效率低下。
那么降低樹的深度自然很重要了。因此,我們引入了B樹,多路查找樹。
特點
樹中每個結點最多含有m個孩子(m>=2);
除根結點和葉子結點外,其它每個結點至少有[ceil(m / 2)]個孩子(其中ceil(x)是一個取上限的函數(shù));
若根結點不是葉子結點,則至少有2個孩子(特殊情況:沒有孩子的根結點,即根結點為葉子結點,整棵樹只有一個根節(jié)點);
所有葉子結點都出現(xiàn)在同一層(最底層),葉子結點為外部結點,保存內容,即key和value。
其他結點為內部結點,保存索引,即key和next。
內部結點的關鍵字key:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
內容結點的指針next:P[1], P[2], …, P[M];其中P[1]指向關鍵字小于K[1]的子樹,P[M]指向關鍵字大于K[M-1]的子樹,其它P[i]指向關鍵字屬于(K[i-1], K[i])的子樹;
例如:(M=3)

查找和插入
為了方便這里用了一個特殊的哨兵鍵,它小于其他所有鍵,用*表示。
一開始B樹只含有一個根結點,而根結點在初始化時僅含有該哨兵鍵。
內部結點中的每個鍵都與一個結點相關聯(lián),以此結點為根的子樹種,所有的鍵都大于等于與此結點關聯(lián)的鍵,但小于其他所有鍵。
這些約定在很大程度上能夠簡化代碼。


代碼
點擊下載。
該代碼實現(xiàn)引入了哨兵鍵,代碼輸出則剔除了它。
代碼里含有哨兵鍵的B樹(將圖片保存到本地查看,字會清晰些):

代碼輸出的B樹(將圖片保存到本地查看,字會清晰些):

public class BTree<Key extends Comparable<Key>, Value>
{
// max children per B-tree node = M-1
// (must be even and greater than 2)
private static final int M = 4;
private Node root; // root of the B-tree
private int height; // height of the B-tree
private int n; // number of key-value pairs in the B-tree
// helper B-tree node data type
private static final class Node
{
private int m; // number of children
private Entry[] children = new Entry[M]; // the array of children
// create a node with k children
private Node(int k)
{
m = k;
}
}
// internal nodes: only use key and next
// external nodes: only use key and value
private static class Entry
{
private Comparable key;
private Object val;
private Node next; // helper field to iterate over array entries
public Entry(Comparable key, Object val, Node next)
{
this.key = key;
this.val = val;
this.next = next;
}
}
/**
* Initializes an empty B-tree.
*/
public BTree()
{
root = new Node(0);
}
/**
* Returns true if this symbol table is empty.
* @return {@code true} if this symbol table is empty; {@code false} otherwise
*/
public boolean isEmpty()
{
return size() == 0;
}
/**
* Returns the number of key-value pairs in this symbol table.
* @return the number of key-value pairs in this symbol table
*/
public int size()
{
return n;
}
/**
* Returns the height of this B-tree (for debugging).
*
* @return the height of this B-tree
*/
public int height()
{
return height;
}
/**
* Returns the value associated with the given key.
*
* @param key the key
* @return the value associated with the given key if the key is in the symbol table
* and {@code null} if the key is not in the symbol table
* @throws NullPointerException if {@code key} is {@code null}
*/
public Value get(Key key)
{
if (key == null)
{
throw new NullPointerException("key must not be null");
}
return search(root, key, height);
}
@SuppressWarnings("unchecked")
private Value search(Node x, Key key, int ht)
{
Entry[] children = x.children;
// external node到最底層葉子結點,遍歷
if (ht == 0)
{
for (int j = 0; j < x.m; j++)
{
if (eq(key, children[j].key))
{
return (Value) children[j].val;
}
}
}
// internal node遞歸查找next地址
else
{
for (int j = 0; j < x.m; j++)
{
if (j+1 == x.m || less(key, children[j+1].key))
{
return search(children[j].next, key, ht-1);
}
}
}
return null;
}
/**
* Inserts the key-value pair into the symbol table, overwriting the old value
* with the new value if the key is already in the symbol table.
* If the value is {@code null}, this effectively deletes the key from the symbol table.
*
* @param key the key
* @param val the value
* @throws NullPointerException if {@code key} is {@code null}
*/
public void put(Key key, Value val)
{
if (key == null)
{
throw new NullPointerException("key must not be null");
}
Node u = insert(root, key, val, height); //分裂后生成的右結點
n++;
if (u == null)
{
return;
}
// need to split root重組root
Node t = new Node(2);
t.children[0] = new Entry(root.children[0].key, null, root);
t.children[1] = new Entry(u.children[0].key, null, u);
root = t;
height++;
}
private Node insert(Node h, Key key, Value val, int ht)
{
int j;
Entry t = new Entry(key, val, null);
// external node外部結點,也是葉子結點,在樹的最底層,存的是內容value
if (ht == 0)
{
for (j = 0; j < h.m; j++)
{
if (less(key, h.children[j].key))
{
break;
}
}
}
// internal node內部結點,存的是next地址
else
{
for (j = 0; j < h.m; j++)
{
if ((j+1 == h.m) || less(key, h.children[j+1].key))
{
Node u = insert(h.children[j++].next, key, val, ht-1);
if (u == null)
{
return null;
}
t.key = u.children[0].key;
t.next = u;
break;
}
}
}
for (int i = h.m; i > j; i--)
{
h.children[i] = h.children[i-1];
}
h.children[j] = t;
h.m++;
if (h.m < M)
{
return null;
}
else
{ //分裂結點
return split(h);
}
}
// split node in half
private Node split(Node h)
{
Node t = new Node(M/2);
h.m = M/2;
for (int j = 0; j < M/2; j++)
{
t.children[j] = h.children[M/2+j];
}
return t;
}
/**
* Returns a string representation of this B-tree (for debugging).
*
* @return a string representation of this B-tree.
*/
public String toString()
{
return toString(root, height, "") + "\n";
}
private String toString(Node h, int ht, String indent)
{
StringBuilder s = new StringBuilder();
Entry[] children = h.children;
if (ht == 0)
{
for (int j = 0; j < h.m; j++)
{
s.append(indent + children[j].key + " " + children[j].val + "\n");
}
}
else
{
for (int j = 0; j < h.m; j++)
{
if (j > 0)
{
s.append(indent + "(" + children[j].key + ")\n");
}
s.append(toString(children[j].next, ht-1, indent + " "));
}
}
return s.toString();
}
// comparison functions - make Comparable instead of Key to avoid casts
private boolean less(Comparable k1, Comparable k2)
{
return k1.compareTo(k2) < 0;
}
private boolean eq(Comparable k1, Comparable k2)
{
return k1.compareTo(k2) == 0;
}
/**
* Unit tests the {@code BTree} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args)
{
BTree<String, String> st = new BTree<String, String>();
st.put("www.cs.princeton.edu", "128.112.136.12");
st.put("www.cs.princeton.edu", "128.112.136.11");
st.put("www.princeton.edu", "128.112.128.15");
st.put("www.yale.edu", "130.132.143.21");
st.put("www.simpsons.com", "209.052.165.60");
st.put("www.apple.com", "17.112.152.32");
st.put("www.amazon.com", "207.171.182.16");
st.put("www.ebay.com", "66.135.192.87");
st.put("www.cnn.com", "64.236.16.20");
st.put("www.google.com", "216.239.41.99");
st.put("www.nytimes.com", "199.239.136.200");
st.put("www.microsoft.com", "207.126.99.140");
st.put("www.dell.com", "143.166.224.230");
st.put("www.slashdot.org", "66.35.250.151");
st.put("www.espn.com", "199.181.135.201");
st.put("www.weather.com", "63.111.66.11");
st.put("www.yahoo.com", "216.109.118.65");
System.out.println("cs.princeton.edu: " + st.get("www.cs.princeton.edu"));
System.out.println("hardvardsucks.com: " + st.get("www.harvardsucks.com"));
System.out.println("simpsons.com: " + st.get("www.simpsons.com"));
System.out.println("apple.com: " + st.get("www.apple.com"));
System.out.println("ebay.com: " + st.get("www.ebay.com"));
System.out.println("dell.com: " + st.get("www.dell.com"));
System.out.println();
System.out.println("size: " + st.size());
System.out.println("height: " + st.height());
System.out.println(st);
System.out.println();
}
}
輸出:
cs.princeton.edu: 128.112.136.12
hardvardsucks.com: null
simpsons.com: 209.052.165.60
apple.com: 17.112.152.32
ebay.com: 66.135.192.87
dell.com: 143.166.224.230
size: 17
height: 2
www.amazon.com 207.171.182.16
www.apple.com 17.112.152.32
www.cnn.com 64.236.16.20
(www.cs.princeton.edu)
www.cs.princeton.edu 128.112.136.12
www.cs.princeton.edu 128.112.136.11
www.dell.com 143.166.224.230
(www.ebay.com)
www.ebay.com 66.135.192.87
www.espn.com 199.181.135.201
www.google.com 216.239.41.99
(www.microsoft.com)
www.microsoft.com 207.126.99.140
www.nytimes.com 199.239.136.200
(www.princeton.edu)
www.princeton.edu 128.112.128.15
www.simpsons.com 209.052.165.60
(www.slashdot.org)
www.slashdot.org 66.35.250.151
www.weather.com 63.111.66.11
(www.yahoo.com)
www.yahoo.com 216.109.118.65
www.yale.edu 130.132.143.21
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
Java使用httpRequest+Jsoup爬取紅藍球號碼
本文將結合實例代碼,介紹Java使用httpRequest+Jsoup爬取紅藍球號碼,需要的朋友們下面隨著小編來一起學習學習吧2021-07-07
Mybatis中一條SQL使用兩個foreach的問題及解決
這篇文章主要介紹了Mybatis中一條SQL使用兩個foreach的問題及解決,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2022-02-02
SpringMVC中MultipartFile上傳獲取圖片的寬度和高度詳解
本篇文章主要介紹了SpringMVC中MultipartFile上傳獲取圖片的寬度和高度,具有一定的參考價值,感興趣的小伙伴們可以參考一下2017-05-05
SpringBoot中配置多數(shù)據(jù)源的方法詳解
這篇文章主要為大家詳細介紹了SpringBoot中配置多數(shù)據(jù)源的方法的相關知識,文中的示例代碼講解詳細,感興趣的小伙伴可以跟隨小編一起學習一下2024-02-02
通過Spring Boot整合Mybatis分析自動配置詳解
這篇文章主要給大家介紹了關于如何通過Spring Boot整合Mybatis分析自動配置的相關資料,文中通過示例代碼介紹的非常詳細,對大家學習或者使用Spring Boot具有一定的參考學習價值,需要的朋友們下面來一起學習學習吧2019-07-07

