從零開始學(xué)Storm(趙必廈、程麗明)帶書簽完整版PDF[81MB]
81.2MB / 12-06
Storm實(shí)戰(zhàn):構(gòu)建大數(shù)據(jù)實(shí)時(shí)計(jì)算 帶書簽完整版PDF[19MB]
19.9MB / 12-04
Storm技術(shù)內(nèi)幕與大數(shù)據(jù)實(shí)踐(陳敏敏 等著)完整版PDF(帶書簽?zāi)夸?
38.6MB / 11-20
storm 實(shí)戰(zhàn)及實(shí)例講解 中文WORD版
19.4KB / 11-15
-
-
機(jī)器學(xué)習(xí)、深度學(xué)習(xí)面試筆試題300+合集 中文pdf完整版 編程其它 / 5.9MB
-
-
-
Arduino編程參考手冊(cè) 中文版PDF 編程其它 / 80KB
-
CODESYS基礎(chǔ)編程及應(yīng)用指南 中文pdf完整版 編程其它 / 10.6MB
-
Tcl教程中文版+入門教程 完整版PDF 編程其它 / 2.12MB
-
圖解算法小抄(筆記) 中文PDF完整版 編程其它 / 6.1MB
-
QNX官方開發(fā)手冊(cè)(中英文版) 完整版pdf 編程其它 / 6.32MB
-
詳情介紹
本書詳細(xì)闡述了實(shí)時(shí)大數(shù)據(jù)分析的實(shí)現(xiàn)過程,主要包括大數(shù)據(jù)技術(shù)前景及分析平臺(tái);熟悉Storm平臺(tái);用Storm處理數(shù)據(jù);Trident介紹和Storm性能優(yōu)化;熟悉Kinesis;熟悉Spark;RDD編程;Spark的SQL查詢引擎;Spark Streaming分析流數(shù)據(jù)以及Lambda架構(gòu)等內(nèi)容。此外,本書還提供了相應(yīng)的示例、代碼,以幫助讀者進(jìn)一步理解相關(guān)方案的實(shí)現(xiàn)過程。 本書適合作為高等院校計(jì)算機(jī)及相關(guān)專業(yè)的教材和教學(xué)參考書,也可作為相關(guān)開發(fā)人員的自學(xué)教材和參考手冊(cè)。
目 錄
第1章 大數(shù)據(jù)技術(shù)前景及分析平臺(tái) 1
1.1 大數(shù)據(jù)的概念 1
1.2 大數(shù)據(jù)的維度范式 2
1.3 大數(shù)據(jù)生態(tài)系統(tǒng) 3
1.4 大數(shù)據(jù)基礎(chǔ)設(shè)施 4
1.5 大數(shù)據(jù)生態(tài)系統(tǒng)組件 5
1.5.1 構(gòu)建業(yè)務(wù)解決方案 8
1.5.2 數(shù)據(jù)集處理 8
1.5.3 解決方案實(shí)施 8
1.5.4 呈現(xiàn) 9
1.6 分布式批處理 9
1.7 分布式數(shù)據(jù)庫(NoSQL) 13
1.7.1 NoSQL數(shù)據(jù)庫的優(yōu)勢(shì) 15
1.7.2 選擇NoSQL數(shù)據(jù)庫 16
1.8 實(shí)時(shí)處理 16
1.8.1 電信或移動(dòng)通信場(chǎng)景 17
1.8.2 運(yùn)輸和物流 17
1.8.3 互聯(lián)的車輛 18
1.8.4 金融部門 18
1.9 本章小結(jié) 18
第2章 熟悉Storm 19
2.1 Storm概述 19
2.2 Storm的發(fā)展 20
2.3 Storm的抽象概念 22
2.3.1 流 22
2.3.2 拓?fù)?22
2.3.3 Spout 23
2.3.4 Bolt 23
2.3.5 任務(wù) 24
2.3.6 工作者 25
2.4 Storm的架構(gòu)及其組件 25
2.4.1 Zookeeper集群 25
2.4.2 Storm集群 25
2.5 如何以及何時(shí)使用Storm 27
2.6 Storm的內(nèi)部特性 32
2.6.1 Storm的并行性 32
2.6.2 Storm的內(nèi)部消息處理 34
2.7 本章小結(jié) 36
第3章 用Storm處理數(shù)據(jù) 37
3.1 Storm輸入數(shù)據(jù)源 37
3.2 認(rèn)識(shí)Kafka 38
3.2.1 關(guān)于Kafka的更多知識(shí) 39
3.2.2 Storm的其他輸入數(shù)據(jù)源 43
3.2.3 Kafka作為輸入數(shù)據(jù)源 46
3.3 數(shù)據(jù)處理的可靠性 47
3.3.1 錨定的概念和可靠性 49
3.3.2 Storm的acking框架 51
3.4 Storm的簡(jiǎn)單模式 52
3.4.1 聯(lián)結(jié) 52
3.4.2 批處理 53
3.5 Storm的持久性 53
3.6 本章小結(jié) 58
第4章 Trident概述和Storm性能優(yōu)化 59
4.1 使用Trident 59
4.1.1 事務(wù) 60
4.1.2 Trident 拓?fù)?60
4.1.3 Trident操作 61
4.2 理解LMAX 65
4.2.1 內(nèi)存和緩存 66
4.2.2 環(huán)形緩沖區(qū)—粉碎器的心臟 69
4.3 Storm的節(jié)點(diǎn)間通信 72
4.3.1 ZeroMQ 73
4.3.2 Storm的ZeroMQ配置 74
4.3.3 Netty 74
4.4 理解Storm UI 75
4.4.1 Storm UI登錄頁面 75
4.4.2 拓?fù)涫醉?78
4.5 優(yōu)化Storm性能 80
4.6 本章小結(jié) 83
第5章 熟悉Kinesis 84
5.1 Kinesis架構(gòu)概述 84
5.1.1 Amazon Kinesis的優(yōu)勢(shì)和用例 84
5.1.2 高級(jí)體系結(jié)構(gòu) 86
5.1.3 Kinesis的組件 87
5.2 創(chuàng)建Kinesis流服務(wù) 90
5.2.1 訪問AWS 90
5.2.2 配置開發(fā)環(huán)境 91
5.2.3 創(chuàng)建Kinesis流 93
5.2.4 創(chuàng)建Kinesis流生產(chǎn)者 97
5.2.5 創(chuàng)建Kinesis流消費(fèi)者 102
5.2.6 產(chǎn)生和消耗犯罪警報(bào) 102
5.3 本章小結(jié) 105
第6章 熟悉Spark 106
6.1 Spark概述 107
6.1.1 批量數(shù)據(jù)處理 107
6.1.2 實(shí)時(shí)數(shù)據(jù)處理 108
6.1.3 一站式解決方案Apache Spark 110
6.1.4 何時(shí)應(yīng)用Spark—實(shí)際用例 112
6.2 Spark的架構(gòu) 114
6.2.1 高級(jí)架構(gòu) 114
6.2.2 Spark擴(kuò)展/庫 116
6.2.3 Spark的封裝結(jié)構(gòu)和API 117
6.2.4 Spark的執(zhí)行模型—主管-工作者視圖 119
6.3 彈性分布式數(shù)據(jù)集(RDD) 122
6.4 編寫執(zhí)行第一個(gè)Spark程序 124
6.4.1 硬件需求 125
6.4.2 基本軟件安裝 125
6.4.3 配置Spark集群 127
6.4.4 用Scala編寫Spark作業(yè) 129
6.4.5 用Java編寫Spark作業(yè) 132
6.5 故障排除提示和技巧 133
6.5.1 Spark所用的端口數(shù)目 134
6.5.2 類路徑問題—類未找到異常 134
6.5.3 其他常見異常 134
6.6 本章小結(jié) 135
第7章 使用RDD編程 136
7.1 理解Spark轉(zhuǎn)換及操作 136
7.1.1 RDD API 137
7.1.2 RDD轉(zhuǎn)換操作 139
7.1.3 RDD功能操作 141
7.2 編程Spark轉(zhuǎn)換及操作 142
7.3 Spark中的持久性 157
7.4 本章小結(jié) 159
第8章 Spark的SQL查詢引擎——Spark SQL 160
8.1 Spark SQL的體系結(jié)構(gòu) 161
8.1.1 Spark SQL的出現(xiàn) 161
8.1.2 Spark SQL的組件 162
8.1.3 Catalyst Optimizer 164
8.1.4 SQL/Hive context 165
8.2 編寫第一個(gè)Spark SQL作業(yè) 166
8.2.1 用Scala編寫Spark SQL作業(yè) 166
8.2.2 用Java編寫Spark SQL作業(yè) 170
8.3 將RDD轉(zhuǎn)換為DataFrame 173
8.3.1 自動(dòng)化過程 174
8.3.2 手動(dòng)過程 176
8.4 使用Parquet 179
8.4.1 在HDFS中持久化Parquet數(shù)據(jù) 182
8.4.2 數(shù)據(jù)分區(qū)和模式演化/合并 185
8.5 Hive表的集成 186
8.6 性能調(diào)優(yōu)和最佳實(shí)踐 190
8.6.1 分區(qū)和并行性 191
8.6.2 序列化 191
8.6.3 緩存 192
8.6.4 內(nèi)存調(diào)優(yōu) 192
8.7 本章小結(jié) 194
第9章 用Spark Streaming分析流數(shù)據(jù) 195
9.1 高級(jí)架構(gòu) 195
9.1.1 Spark Streaming的組件 196
9.1.2 Spark Streaming的封裝結(jié)構(gòu) 198
9.2 編寫第一個(gè)Spark Streaming作業(yè) 200
9.2.1 創(chuàng)建流生成器 201
9.2.2 用Scala編寫Spark Streaming作業(yè) 202
9.2.3 用Java編寫Spark Streaming作業(yè) 205
9.2.4 執(zhí)行Spark Streaming作業(yè) 207
9.3 實(shí)時(shí)查詢流數(shù)據(jù) 209
9.3.1 作業(yè)的高級(jí)架構(gòu) 209
9.3.2 編寫Crime生產(chǎn)者 210
9.3.3 編寫Stream消費(fèi)者和轉(zhuǎn)換器 212
9.3.4 執(zhí)行SQL Streaming Crime分析器 214
9.4 部署和監(jiān)測(cè) 216
9.4.1 用于Spark Streaming的集群管理器 216
9.4.2 監(jiān)測(cè)Spark Streaming應(yīng)用程序 218
9.5 本章小結(jié) 219
第10章 介紹Lambda架構(gòu) 220
10.1 什么是Lambda架構(gòu) 220
10.1.1 Lambda架構(gòu)的需求 220
10.1.2 Lambda架構(gòu)的層/組件 222
10.2 Lambda架構(gòu)的技術(shù)矩陣 226
10.3 Lambda架構(gòu)的實(shí)現(xiàn) 228
10.3.1 高級(jí)架構(gòu) 229
10.3.2 配置Apache Cassandra和Spark 230
10.3.3 編寫自定義生產(chǎn)者程序 233
10.3.4 編寫實(shí)時(shí)層代碼 235
10.3.5 編寫批處理層代碼 238
10.3.6 編寫服務(wù)層代碼 239
10.3.7 執(zhí)行所有層代碼 241
10.4 本章小結(jié) 243
下載地址
實(shí)時(shí)大數(shù)據(jù)分析:基于Storm、Spark技術(shù)的實(shí)時(shí)應(yīng)用 帶目錄完整版pdf[161MB]
人氣書籍
微信公眾平臺(tái)應(yīng)用開發(fā)實(shí)戰(zhàn) PDF掃描版
Arduino編程參考手冊(cè) 中文版PDF
設(shè)計(jì)模式:可復(fù)用面向?qū)ο筌浖幕A(chǔ) PDF 掃描版[21M]
啊哈!算法 PDF掃描版[73MB]
proe5.0 入門教程pdf版
算法圖解 (袁國忠著) 中文pdf完整版[17MB]
Unity3D游戲開發(fā) 宣雨松著 PDF掃描版[27MB]
R語言實(shí)戰(zhàn)(第2版) ([美]卡巴科弗) 中文pdf完整版[19MB]
unity3d從入門到精通中文教程 高清PDF完整版[11MB]
編程之美PDF全集
下載聲明
☉ 解壓密碼:www.dbjr.com.cn 就是本站主域名,希望大家看清楚,[ 分享碼的獲取方法 ]可以參考這篇文章
☉ 推薦使用 [ 迅雷 ] 下載,使用 [ WinRAR v5 ] 以上版本解壓本站軟件。
☉ 如果這個(gè)軟件總是不能下載的請(qǐng)?jiān)谠u(píng)論中留言,我們會(huì)盡快修復(fù),謝謝!
☉ 下載本站資源,如果服務(wù)器暫不能下載請(qǐng)過一段時(shí)間重試!或者多試試幾個(gè)下載地址
☉ 如果遇到什么問題,請(qǐng)?jiān)u論留言,我們定會(huì)解決問題,謝謝大家支持!
☉ 本站提供的一些商業(yè)軟件是供學(xué)習(xí)研究之用,如用于商業(yè)用途,請(qǐng)購買正版。
☉ 本站提供的實(shí)時(shí)大數(shù)據(jù)分析:基于Storm、Spark技術(shù)的實(shí)時(shí)應(yīng)用 帶目錄完整版pdf[161MB] 資源來源互聯(lián)網(wǎng),版權(quán)歸該下載資源的合法擁有者所有。