時序數(shù)據(jù)庫VictoriaMetrics源碼解析之寫入與索引
一. 存儲格式
下圖是向VictoriaMetrics寫入prometheus協(xié)議數(shù)據(jù)的示例:
VM在收到寫入請求時,會對請求中包含的時序數(shù)據(jù)做轉(zhuǎn)換處理:
- 首先,根據(jù)metrics+labels組成的MetricName,生成一個唯一標(biāo)識TSID;
然后:
- metric(指標(biāo)名稱__name__) + labels + TSID作為索引index;
- TSID + timestamp + value作為數(shù)據(jù)data;
- 最后,索引index和數(shù)據(jù)data分別進行存儲和檢索;
因此,VM的數(shù)據(jù)整體上分為索引和數(shù)據(jù)2個部分:
- 索引部分,用以支持按照label或tag進行多維檢索,得到TSID;
- 數(shù)據(jù)部分,用以支持按照TSID得到tv數(shù)據(jù);
二. 整體流程
VictoriaMetrics在寫入原始的rows數(shù)據(jù)時,寫入過程分為兩個部分:
- 寫index;
- 寫tv;
寫入流程:
- 對于原始的rows數(shù)據(jù),根據(jù)其metricsName從cache和內(nèi)存索引中,查找其對應(yīng)的TSID;
- 若TSID找到,則寫入tv數(shù)據(jù),返回client;
否則:
寫index:
- 構(gòu)造TSID,構(gòu)造新的index items,然后將其寫入內(nèi)存shard;
- 內(nèi)存shard被異步的goroutine壓縮并保存到磁盤;
- 寫tv數(shù)據(jù);
- 返回client;
三. 寫入代碼
1.入口代碼
vmstorage監(jiān)聽tcp端口,收到vminsert的插入請求后,進行處理:
// app/vmstorage/servers/vminsert.go func (s *VMInsertServer) run() { ... for { c, err := s.ln.Accept() ... go func() { bc, err := handshake.VMInsertServer(c, compressionLevel) ... err = clusternative.ParseStream(bc, func(rows []storage.MetricRow) error { vminsertMetricsRead.Add(len(rows)) return s.storage.AddRows(rows, uint8(*precisionBits)) // 入口代碼 }, s.storage.IsReadOnly) ... }() } }
寫入時,1次最多寫8K個rows:
func (s *Storage) AddRows(mrs []MetricRow, precisionBits uint8) error { .... maxBlockLen := len(ic.rrs) for len(mrs) > 0 { mrsBlock := mrs // 一次最多寫8K,maxBlockLen=8000 if len(mrs) > maxBlockLen { mrsBlock = mrs[:maxBlockLen] mrs = mrs[maxBlockLen:] } else { mrs = nil } // 寫入8K rows的數(shù)據(jù) if err := s.add(ic.rrs, ic.tmpMrs, mrsBlock, precisionBits); err != nil { if firstErr == nil { firstErr = err } continue } atomic.AddUint64(&rowsAddedTotal, uint64(len(mrsBlock))) } .... }
2.寫入流程的代碼
寫入過程主要分2步:
首先,為row查找或構(gòu)建TSID;
- 若該row的metricNameRaw與prevMetricNameRaw,則使用prevTSID;
- 若cache中有緩存的metricNameRaw,則使用緩存的metricNameRaw對應(yīng)的TSID;
若上述都不滿足,則去內(nèi)存索引中查找,或者創(chuàng)建一個新的TSID;
- 這一步是最耗時的;
- 然后,構(gòu)建TSID完畢后,插入tv數(shù)據(jù);
// lib/storage/storage.go func (s *Storage) add(rows []rawRow, dstMrs []*MetricRow, mrs []MetricRow, precisionBits uint8) error { ... // 1.構(gòu)造r.TSID // 若跟prevMetricNameRaw相同,則使用pervTSID; // 若cache中有metricNameRaw,則使用cache.TSID; for i := range mrs { mr := &mrs[i] ... dstMrs[j] = mr r := &rows[j] j++ r.Timestamp = mr.Timestamp r.Value = mr.Value r.PrecisionBits = precisionBits if string(mr.MetricNameRaw) == string(prevMetricNameRaw) { // 使用prevTSID // Fast path - the current mr contains the same metric name as the previous mr, so it contains the same TSID. // This path should trigger on bulk imports when many rows contain the same MetricNameRaw. r.TSID = prevTSID continue } if s.getTSIDFromCache(&genTSID, mr.MetricNameRaw) { // 使用緩存的TSID ... r.TSID = genTSID.TSID prevTSID = r.TSID prevMetricNameRaw = mr.MetricNameRaw ... continue } ... } if pmrs != nil { // Sort pendingMetricRows by canonical metric name in order to speed up search via `is` in the loop below. pendingMetricRows := pmrs.pmrs sort.Slice(pendingMetricRows, func(i, j int) bool { return string(pendingMetricRows[i].MetricName) < string(pendingMetricRows[j].MetricName) }) prevMetricNameRaw = nil var slowInsertsCount uint64 for i := range pendingMetricRows { ... r := &rows[j] j++ r.Timestamp = mr.Timestamp r.Value = mr.Value r.PrecisionBits = precisionBits // 嘗試去index找查找,或者創(chuàng)建 if err := is.GetOrCreateTSIDByName(&r.TSID, pmr.MetricName, mr.MetricNameRaw, date); err != nil { ... continue } genTSID.generation = idb.generation genTSID.TSID = r.TSID // 放回cache s.putTSIDToCache(&genTSID, mr.MetricNameRaw) prevTSID = r.TSID prevMetricNameRaw = mr.MetricNameRaw } } ... dstMrs = dstMrs[:j] rows = rows[:j] err := s.updatePerDateData(rows, dstMrs) if err != nil { err = fmt.Errorf("cannot update per-date data: %w", err) } else { // TSID構(gòu)造完畢,開始插入數(shù)據(jù) err = s.tb.AddRows(rows) ... } ... return nil }
3.寫index
寫index是slow path,重點看一下:
- 首先,去內(nèi)存索引中找TSID,若找到,則返回;
- 否則,創(chuàng)建一個新的TSID;
// lib/storage/index_db.go func (is *indexSearch) GetOrCreateTSIDByName(dst *TSID, metricName, metricNameRaw []byte, date uint64) error { // 1.首先嘗試在index中查找 if is.tsidByNameMisses < 100 { err := is.getTSIDByMetricName(dst, metricName) // 在index中找到了 if err == nil { // Fast path - the TSID for the given metricName has been found in the index. is.tsidByNameMisses = 0 if err = is.db.s.registerSeriesCardinality(dst.MetricID, metricNameRaw); err != nil { return err } return nil } is.tsidByNameMisses++ } else { is.tsidByNameSkips++ if is.tsidByNameSkips > 10000 { is.tsidByNameSkips = 0 is.tsidByNameMisses = 0 } } // 2.沒有找到,那么創(chuàng)建一個 if err := is.createTSIDByName(dst, metricName, metricNameRaw, date); err != nil { userReadableMetricName := getUserReadableMetricName(metricNameRaw) return fmt.Errorf("cannot create TSID by MetricName %s: %w", userReadableMetricName, err) } return nil }
4. 生成TSID
具體生成TSID的邏輯:
- MetricGroupID: 由metricGroup hash而來;
- JobID:由tags[0].Value hash而來;
- InstanceID:由tags[1].Value hash而來;
// lib/storage/index_db.go func generateTSID(dst *TSID, mn *MetricName) { dst.AccountID = mn.AccountID dst.ProjectID = mn.ProjectID dst.MetricGroupID = xxhash.Sum64(mn.MetricGroup) if len(mn.Tags) > 0 { dst.JobID = uint32(xxhash.Sum64(mn.Tags[0].Value)) } if len(mn.Tags) > 1 { dst.InstanceID = uint32(xxhash.Sum64(mn.Tags[1].Value)) } dst.MetricID = generateUniqueMetricID() }
而TSID中的metricID是由啟動時的時間戳+1產(chǎn)生:
// Returns local unique MetricID. func generateUniqueMetricID() uint64 { return atomic.AddUint64(&nextUniqueMetricID, 1) } var nextUniqueMetricID = uint64(time.Now().UnixNano())
5. 創(chuàng)建index items
- 創(chuàng)建 MetricName -> TSID index;
- 創(chuàng)建 MetricID -> MetricName index;
- 創(chuàng)建 MetricID -> TSID index;
- 創(chuàng)建 tag -> MetricID 和 MetricGroup+tag -> MetricID index;
- 最后,將index items存入內(nèi)存shards;
// lib/storage/index_db.go func (is *indexSearch) createGlobalIndexes(tsid *TSID, mn *MetricName) { // The order of index items is important. // It guarantees index consistency. ii := getIndexItems() defer putIndexItems(ii) // Create MetricName -> TSID index. ii.B = append(ii.B, nsPrefixMetricNameToTSID) ii.B = mn.Marshal(ii.B) ii.B = append(ii.B, kvSeparatorChar) ii.B = tsid.Marshal(ii.B) ii.Next() // Create MetricID -> MetricName index. ii.B = marshalCommonPrefix(ii.B, nsPrefixMetricIDToMetricName, mn.AccountID, mn.ProjectID) ii.B = encoding.MarshalUint64(ii.B, tsid.MetricID) ii.B = mn.Marshal(ii.B) ii.Next() // Create MetricID -> TSID index. ii.B = marshalCommonPrefix(ii.B, nsPrefixMetricIDToTSID, mn.AccountID, mn.ProjectID) ii.B = encoding.MarshalUint64(ii.B, tsid.MetricID) ii.B = tsid.Marshal(ii.B) ii.Next() prefix := kbPool.Get() prefix.B = marshalCommonPrefix(prefix.B[:0], nsPrefixTagToMetricIDs, mn.AccountID, mn.ProjectID) ii.registerTagIndexes(prefix.B, mn, tsid.MetricID) kbPool.Put(prefix) is.db.tb.AddItems(ii.Items) // 將items存入內(nèi)存shards }
6. index items存入內(nèi)存shards
Index items構(gòu)造完成后,被寫入內(nèi)存的shards,會有異步的goroutine將其壓縮寫入disk。
寫內(nèi)存shards的方法: roundRobin
- 內(nèi)存中有若干個index shards;
- 寫入時,輪轉(zhuǎn)寫入:idx++ % shards
// lib/mergeset/table.go func (riss *rawItemsShards) addItems(tb *Table, items [][]byte) { shards := riss.shards shardsLen := uint32(len(shards)) for len(items) > 0 { n := atomic.AddUint32(&riss.shardIdx, 1) idx := n % shardsLen items = shards[idx].addItems(tb, items) } }
內(nèi)存中shards總數(shù),跟cpu核數(shù)有關(guān)系:
- shards總數(shù) = (cpu*cpu + 1) / 2
- 對于4C的機器,有8個shards;
// lib/mergeset/table.go / The number of shards for rawItems per table. // // Higher number of shards reduces CPU contention and increases the max bandwidth on multi-core systems. var rawItemsShardsPerTable = func() int { cpus := cgroup.AvailableCPUs() multiplier := cpus if multiplier > 16 { multiplier = 16 } return (cpus*multiplier + 1) / 2 }()
以上就是時序數(shù)據(jù)庫VictoriaMetrics源碼解析之寫入與索引的詳細(xì)內(nèi)容,更多關(guān)于VictoriaMetrics寫入索引的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
dbeaver工具連接達(dá)夢數(shù)據(jù)庫的完整步驟
DBeaver數(shù)據(jù)庫連接工具是我用了這么久最好用的一個數(shù)據(jù)庫連接工具,擁有的優(yōu)點,支持的數(shù)據(jù)庫多、快捷鍵很贊、導(dǎo)入導(dǎo)出數(shù)據(jù)非常方便,下面這篇文章主要給大家介紹了關(guān)于dbeaver工具連接達(dá)夢數(shù)據(jù)庫的完整步驟,需要的朋友可以參考下2023-05-05解決Navicat Premium 15連接數(shù)據(jù)庫閃退的問題
這篇文章主要介紹了Navicat Premium 15連接數(shù)據(jù)庫閃退,本文給大家分享解決方法,對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2021-03-03關(guān)系型數(shù)據(jù)庫和非關(guān)系型數(shù)據(jù)庫概述與優(yōu)缺點對比
這篇文章介紹了關(guān)系型數(shù)據(jù)庫和非關(guān)系型數(shù)據(jù)庫概述與優(yōu)缺點對比,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2022-03-03