基于MySQL實(shí)現(xiàn)基礎(chǔ)圖數(shù)據(jù)庫的詳細(xì)步驟
一、概念
圖數(shù)據(jù)庫是一種用于存儲和查詢具有復(fù)雜關(guān)系的數(shù)據(jù)的數(shù)據(jù)庫。在這種數(shù)據(jù)庫中,數(shù)據(jù)被表示為節(jié)點(diǎn)(實(shí)體)和邊(關(guān)系)。圖數(shù)據(jù)庫的核心優(yōu)勢在于能夠快速地查詢和處理節(jié)點(diǎn)之間的關(guān)系。
圖數(shù)據(jù)庫特點(diǎn):
- 高效處理復(fù)雜關(guān)系:圖數(shù)據(jù)庫擅長處理復(fù)雜、多層級的關(guān)系,這使得它在社交網(wǎng)絡(luò)分析、推薦系統(tǒng)等領(lǐng)域具有顯著優(yōu)勢。
- 靈活的查詢語言:圖數(shù)據(jù)庫通常使用類似自然語言的查詢語言,如Gremlin或Cypher,使得查詢過程更加直觀。
但并非只有專業(yè)的圖數(shù)據(jù)庫可以實(shí)現(xiàn)圖的一些操作,比如:圖挖掘,實(shí)際也可以通過MySQL來實(shí)現(xiàn)。本文主要講解如何通過MySQL構(gòu)建圖數(shù)據(jù)存儲,當(dāng)然MySQL構(gòu)建圖結(jié)構(gòu)數(shù)據(jù)與專業(yè)圖數(shù)據(jù)庫還是有能力上的差異,比如:圖算法需要自己通過SQL實(shí)現(xiàn)、整體效率不及專業(yè)圖數(shù)據(jù)庫等。
二、應(yīng)用場景
基于MySQL實(shí)現(xiàn)圖數(shù)據(jù)庫,是通過多表關(guān)聯(lián)來實(shí)現(xiàn)操作,因此性能和整體能力肯定不及專業(yè)圖數(shù)據(jù)庫。
MySQL實(shí)現(xiàn)圖存儲最適合場景:
- 中小規(guī)模圖數(shù)據(jù)(≤10萬節(jié)點(diǎn))
- 需要強(qiáng)事務(wù)保證的業(yè)務(wù)系統(tǒng)
- 圖查詢以1-3度關(guān)系為主
- 已有MySQL基礎(chǔ)設(shè)施且預(yù)算有限
專業(yè)圖數(shù)據(jù)庫場景:
- 大規(guī)模圖數(shù)據(jù)(≥100萬節(jié)點(diǎn))
- 需要復(fù)雜圖算法(社區(qū)發(fā)現(xiàn)等)
- 深度路徑查詢(≥4度關(guān)系)
- 實(shí)時圖分析需求
三、實(shí)現(xiàn)
環(huán)境搭建
首先我們需要有MySQL環(huán)境,我這里為了方便就直接通過docker搭建MySQL:
docker run -d \ --name mysql8 \ --restart always \ -p 3306:3306 \ -e TZ=Asia/Shanghai \ -e MYSQL_ROOT_PASSWORD=123456 \ -v /Users/ziyi2/docker-home/mysql/data:/var/lib/mysql \ mysql:8.0
存儲結(jié)構(gòu)定義
圖主要包含節(jié)點(diǎn)、邊,因此我們這里選擇定義兩個數(shù)據(jù)表來實(shí)現(xiàn)。同時節(jié)點(diǎn)和邊都具有很多屬性,且為kv對,這里我們就采用MySQL中的JSON格式存儲。
-- 節(jié)點(diǎn)表 CREATE TABLE IF NOT EXISTS node ( node_id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY, properties JSON COMMENT '節(jié)點(diǎn)屬性' ); -- 邊表 CREATE TABLE IF NOT EXISTS edge ( edge_id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY, source_id BIGINT NOT NULL COMMENT '源節(jié)點(diǎn)ID', target_id BIGINT NOT NULL COMMENT '目標(biāo)節(jié)點(diǎn)ID', properties JSON COMMENT '邊屬性', FOREIGN KEY(source_id) REFERENCES node(node_id) ON DELETE CASCADE, FOREIGN KEY(target_id) REFERENCES node(node_id) ON DELETE CASCADE ); -- 索引創(chuàng)建 CREATE INDEX idx_edge_source ON edge(source_id); CREATE INDEX idx_edge_target ON edge(target_id);
基礎(chǔ)功能
創(chuàng)建
節(jié)點(diǎn)創(chuàng)建:
-- 創(chuàng)建用戶節(jié)點(diǎn) INSERT INTO node (properties) VALUES ('{"type": "user", "name": "張三", "age": 28, "interests": ["籃球","音樂"]}'), ('{"type": "user", "name": "李四", "age": 32, "interests": ["電影","美食"]}'), ('{"type": "user", "name": "王五", "age": 27, "interests": ["跑步","美食"]}');
邊創(chuàng)建:
-- 創(chuàng)建好友關(guān)系 INSERT INTO edge (source_id, target_id, properties) VALUES (1, 3, '{"type": "friend", "since": "2023-01-01"}'), (2, 3, '{"type": "friend", "since": "2023-01-01"}');
查詢
根據(jù)節(jié)點(diǎn)屬性查詢節(jié)點(diǎn)
SELECT * from node where properties->>'$.name' = '張三';
查詢某個節(jié)點(diǎn)關(guān)聯(lián)的另一個節(jié)點(diǎn)
-- 查詢張三的好友 SELECT n2.node_id, n2.properties->>'$.name' AS friend_name FROM edge e JOIN node n1 ON e.source_id = n1.node_id JOIN node n2 ON e.target_id = n2.node_id WHERE n1.properties->>'$.name' = '張三' AND e.properties->>'$.type' = 'friend';
查詢兩個節(jié)點(diǎn)的公共節(jié)點(diǎn)。查詢共同好友,因?yàn)閺埲?、王五是好友,李四、王五是好友,所以張三跟李四的共同好友就是王?/p>
-- 查詢共同好友 SELECT n3.properties->>'$.name' AS common_friend FROM edge e1 JOIN edge e2 ON e1.target_id = e2.target_id JOIN node n1 ON e1.source_id = n1.node_id JOIN node n2 ON e2.source_id = n2.node_id JOIN node n3 ON e1.target_id = n3.node_id WHERE n1.properties->>'$.name' = '張三' AND n2.properties->>'$.name' = '李四' AND e1.properties->>'$.type' = 'friend' AND e2.properties->>'$.type' = 'friend';
遞歸
查找某個節(jié)點(diǎn)關(guān)聯(lián)的所有節(jié)點(diǎn),類似與Neo4j中的Expand展開。
-- 遞歸查找所有關(guān)聯(lián)節(jié)點(diǎn) WITH RECURSIVE node_path AS ( SELECT source_id, target_id, properties, 1 AS depth FROM edge WHERE source_id = 1 UNION ALL SELECT np.source_id, e.target_id, e.properties, np.depth + 1 FROM node_path np JOIN edge e ON np.target_id = e.source_id WHERE np.depth < 5 -- 控制最大深度 ) SELECT * FROM node_path;
效果:
更新
-- 更新節(jié)點(diǎn)已有屬性值【更新完之后查詢效果】 SELECT * from node where properties->>'$.name' = '張三'; UPDATE node SET properties = JSON_SET(properties, '$.age', 29) WHERE properties->>'$.name' = '張三'; -- 新增節(jié)點(diǎn)屬性:添加新興趣 UPDATE node SET properties = JSON_ARRAY_APPEND(properties, '$.interests', '游泳') WHERE properties->>'$.name' = '張三'; SELECT * from node where properties->>'$.name' = '張三';
刪除
-- 刪除關(guān)系 DELETE FROM edge WHERE source_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '張三') AND target_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '王五'); -- 刪除節(jié)點(diǎn)及其關(guān)系 DELETE FROM node WHERE properties->>'$.name' = '張三';
下面演示刪除關(guān)系過程,刪除節(jié)點(diǎn)同理:
1.刪除之前
select * from edge WHERE source_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '張三') AND target_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '王五');
2. 執(zhí)行SQL刪除后
-- 刪除關(guān)系 DELETE FROM edge WHERE source_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '張三') AND target_id = (SELECT node_id FROM node WHERE properties->>'$.name' = '王五');
圖算法實(shí)現(xiàn)
1. 度中心性算法
度中心性算法(Degree Centrality)
- 介紹:中心性是刻畫節(jié)點(diǎn)中心性的最直接度量指標(biāo)。節(jié)點(diǎn)的度是指一個節(jié)點(diǎn)連接的邊的數(shù)量,一個 節(jié)點(diǎn)的度越大就意味著這個節(jié)點(diǎn)的度中心性越高,該節(jié)點(diǎn)在網(wǎng)絡(luò)中就越重要。對于有向圖,還 要分別考慮出度/入度/出入度。
- 計(jì)算:統(tǒng)計(jì)節(jié)點(diǎn)連接的邊數(shù)量。
- 應(yīng)用:計(jì)算某個領(lǐng)域的KOL關(guān)鍵人物,頭部商家、用戶、up主…
數(shù)據(jù)構(gòu)造:
-- 刪除之前數(shù)據(jù),避免用戶數(shù)據(jù)重復(fù)等 DELETE FROM edge; DELETE FROM node; ALTER TABLE node AUTO_INCREMENT = 1; ALTER TABLE edge AUTO_INCREMENT = 1; -- 創(chuàng)建用戶節(jié)點(diǎn) INSERT INTO node (properties) VALUES ('{"type":"user","name":"張三","title":"科技博主"}'), ('{"type":"user","name":"李四","title":"美食達(dá)人"}'), ('{"type":"user","name":"王五","title":"旅行攝影師"}'), ('{"type":"user","name":"趙六","title":"投資專家"}'), ('{"type":"user","name":"錢七","title":"健身教練"}'), ('{"type":"user","name":"周八","title":"寵物博主"}'), ('{"type":"user","name":"吳九","title":"歷史學(xué)者"}'); -- 創(chuàng)建關(guān)注關(guān)系 INSERT INTO edge (source_id, target_id, properties) VALUES -- 張三被關(guān)注關(guān)系 (2,1, '{"type":"follow","timestamp":"2023-01-10"}'), (3,1, '{"type":"follow","timestamp":"2023-01-12"}'), (4,1, '{"type":"follow","timestamp":"2023-01-15"}'), (5,1, '{"type":"follow","timestamp":"2023-01-18"}'), -- 李四被關(guān)注關(guān)系 (1,2, '{"type":"follow","timestamp":"2023-01-20"}'), (3,2, '{"type":"follow","timestamp":"2023-01-22"}'), (6,2, '{"type":"follow","timestamp":"2023-01-25"}'), -- 王五被關(guān)注關(guān)系 (1,3, '{"type":"follow","timestamp":"2023-02-01"}'), (7,3, '{"type":"follow","timestamp":"2023-02-05"}'), -- 趙六被關(guān)注關(guān)系 (4,4, '{"type":"follow","timestamp":"2023-02-10"}'); -- 自關(guān)注(特殊情況)
度中心性算法實(shí)現(xiàn):
-- 計(jì)算用戶被關(guān)注度(入度中心性) SELECT n.node_id, n.properties->>'$.name' AS user_name, n.properties->>'$.title' AS title, COUNT(e.edge_id) AS follower_count, -- 計(jì)算標(biāo)準(zhǔn)化中心性(0-1范圍) ROUND(COUNT(e.edge_id) / (SELECT COUNT(*)-1 FROM node WHERE properties->>'$.type'='user'), 3) AS normalized_centrality FROM node n LEFT JOIN edge e ON n.node_id = e.target_id AND e.properties->>'$.type' = 'follow' WHERE n.properties->>'$.type' = 'user' GROUP BY n.node_id ORDER BY follower_count DESC;
效果:
2. 相似度算法
圖場景中相似度算法主流的主要包含:余弦相似度、杰卡德相似度。這里主要介紹下Jaccard相似度算法。
- 杰卡德相似度(Jaccard Similarity)
- 介紹:節(jié)點(diǎn)A和節(jié)點(diǎn)B的杰卡德相似度定義為,節(jié)點(diǎn)A鄰居和節(jié)點(diǎn)B鄰居的交集節(jié)點(diǎn)數(shù)量除以并集節(jié)點(diǎn) 數(shù)量。Jaccard系數(shù)計(jì)算的是兩個節(jié)點(diǎn)的鄰居集合的重合程度,以此來衡量兩個節(jié)點(diǎn)的相似度。
- 計(jì)算:計(jì)算兩個節(jié)點(diǎn)鄰居集合的交集數(shù)量和并集數(shù)量,然后再相除。公式:|A ∩ B| / (|A| + |B| - |A ∩ B|)
- 應(yīng)用:共同好友推薦、電商商品推薦猜你喜歡
數(shù)據(jù)構(gòu)造:
-- 清理之前數(shù)據(jù),避免混淆 DELETE FROM edge; DELETE FROM node; ALTER TABLE node AUTO_INCREMENT = 1; ALTER TABLE edge AUTO_INCREMENT = 1; -- 創(chuàng)建用戶節(jié)點(diǎn)(包含風(fēng)險標(biāo)記) INSERT INTO node (properties) VALUES ('{"type":"user","name":"張三","phone":"13800138000","risk_score":5,"register_time":"2023-01-01"}'), ('{"type":"user","name":"李四","phone":"13900139000","risk_score":85,"register_time":"2023-01-05"}'), -- 黑產(chǎn)用戶 ('{"type":"user","name":"王五","phone":"13700137000","risk_score":92,"register_time":"2023-01-10"}'), -- 黑產(chǎn)用戶 ('{"type":"user","name":"趙六","phone":"13600136000","risk_score":15,"register_time":"2023-01-15"}'), ('{"type":"user","name":"錢七","phone":"13500135000","risk_score":8,"register_time":"2023-01-20"}'), ('{"type":"user","name":"孫八","phone":"13400134000","risk_score":95,"register_time":"2023-01-25"}'); -- 黑產(chǎn)用戶 -- 創(chuàng)建設(shè)備節(jié)點(diǎn) INSERT INTO node (properties) VALUES ('{"type":"device","device_id":"D001","model":"iPhone12","os":"iOS14"}'), ('{"type":"device","device_id":"D002","model":"HuaweiP40","os":"Android10"}'), ('{"type":"device","device_id":"D003","model":"Xiaomi11","os":"Android11"}'), ('{"type":"device","device_id":"D004","model":"OPPOReno5","os":"Android11"}'); -- 創(chuàng)建銀行卡節(jié)點(diǎn) INSERT INTO node (properties) VALUES ('{"type":"bank_card","card_no":"622588******1234","bank":"招商銀行"}'), ('{"type":"bank_card","card_no":"622848******5678","bank":"農(nóng)業(yè)銀行"}'), ('{"type":"bank_card","card_no":"622700******9012","bank":"建設(shè)銀行"}'), ('{"type":"bank_card","card_no":"622262******3456","bank":"交通銀行"}'); -- 創(chuàng)建IP地址節(jié)點(diǎn) INSERT INTO node (properties) VALUES ('{"type":"ip","ip_address":"192.168.1.101","location":"廣東深圳"}'), ('{"type":"ip","ip_address":"192.168.2.202","location":"浙江杭州"}'), ('{"type":"ip","ip_address":"192.168.3.303","location":"江蘇南京"}'), ('{"type":"ip","ip_address":"192.168.4.404","location":"北京朝陽"}'); -- 創(chuàng)建關(guān)聯(lián)關(guān)系 INSERT INTO edge (source_id, target_id, properties) VALUES -- 用戶-設(shè)備關(guān)系 (1,7, '{"type":"use","first_time":"2023-01-01"}'), -- 張三使用D001 (2,7, '{"type":"use","first_time":"2023-01-05"}'), -- 李四使用D001 (2,8, '{"type":"use","first_time":"2023-01-06"}'), -- 李四使用D002 (3,8, '{"type":"use","first_time":"2023-01-10"}'), -- 王五使用D002 (3,9, '{"type":"use","first_time":"2023-01-11"}'), -- 王五使用D003 (4,10,'{"type":"use","first_time":"2023-01-15"}'), -- 趙六使用D004 (5,9, '{"type":"use","first_time":"2023-01-20"}'), -- 錢七使用D003 (6,7, '{"type":"use","first_time":"2023-01-25"}'), -- 孫八使用D001 -- 用戶-銀行卡關(guān)系 (1,11, '{"type":"bind","time":"2023-01-02"}'), -- 張三綁定銀行卡1 (2,11, '{"type":"bind","time":"2023-01-05"}'), -- 李四綁定銀行卡1 (2,12, '{"type":"bind","time":"2023-01-07"}'), -- 李四綁定銀行卡2 (3,12, '{"type":"bind","time":"2023-01-11"}'), -- 王五綁定銀行卡2 (3,13, '{"type":"bind","time":"2023-01-12"}'), -- 王五綁定銀行卡3 (4,14, '{"type":"bind","time":"2023-01-16"}'), -- 趙六綁定銀行卡4 (5,13, '{"type":"bind","time":"2023-01-21"}'), -- 錢七綁定銀行卡3 (6,11, '{"type":"bind","time":"2023-01-26"}'), -- 孫八綁定銀行卡1 -- 用戶-IP關(guān)系 (1,15, '{"type":"login","time":"2023-01-03"}'), -- 張三登錄IP1 (2,15, '{"type":"login","time":"2023-01-05"}'), -- 李四登錄IP1 (2,16, '{"type":"login","time":"2023-01-08"}'), -- 李四登錄IP2 (3,16, '{"type":"login","time":"2023-01-10"}'), -- 王五登錄IP2 (3,17, '{"type":"login","time":"2023-01-13"}'), -- 王五登錄IP3 (4,18, '{"type":"login","time":"2023-01-17"}'), -- 趙六登錄IP4 (5,17, '{"type":"login","time":"2023-01-22"}'), -- 錢七登錄IP3 (6,15, '{"type":"login","time":"2023-01-27"}'); -- 孫八登錄IP1
算法實(shí)現(xiàn):
Jaccard相似度數(shù)學(xué)公式:|A ∩ B| / (|A| + |B| - |A ∩ B|)
-- 基于Jaccard相似度的圖相似度算法實(shí)現(xiàn) WITH user_entities AS ( SELECT u.node_id AS user_id, ( SELECT JSON_ARRAYAGG(ed.target_id) FROM edge ed WHERE ed.source_id = u.node_id AND ed.properties->>'$.type' = 'use' AND ed.target_id IN (SELECT node_id FROM node WHERE properties->>'$.type' = 'device') ) AS devices, ( SELECT JSON_ARRAYAGG(ec.target_id) FROM edge ec WHERE ec.source_id = u.node_id AND ec.properties->>'$.type' = 'bind' AND ec.target_id IN (SELECT node_id FROM node WHERE properties->>'$.type' = 'bank_card') ) AS cards, ( SELECT JSON_ARRAYAGG(ei.target_id) FROM edge ei WHERE ei.source_id = u.node_id AND ei.properties->>'$.type' = 'login' AND ei.target_id IN (SELECT node_id FROM node WHERE properties->>'$.type' = 'ip') ) AS ips FROM node u WHERE u.properties->>'$.type' = 'user' ), -- 已知黑產(chǎn)用戶 black_users AS ( SELECT node_id FROM node WHERE properties->>'$.type' = 'user' AND CAST(properties->>'$.risk_score' AS UNSIGNED) > 80 ), -- 相似度計(jì)算 similarity_calc AS ( SELECT u1.user_id AS target_user, u2.user_id AS black_user, -- 設(shè)備相似度 (Jaccard系數(shù)): |A ∩ B| / (|A| + |B| - |A ∩ B|) CASE WHEN u1.devices IS NULL OR u2.devices IS NULL OR JSON_LENGTH(u1.devices) = 0 OR JSON_LENGTH(u2.devices) = 0 THEN 0 ELSE ( -- 分子部分: |A ∩ B| (交集的大小) SELECT COUNT(DISTINCT d1.device_id) FROM JSON_TABLE(u1.devices, '$[*]' COLUMNS(device_id BIGINT PATH '$')) d1 INNER JOIN JSON_TABLE(u2.devices, '$[*]' COLUMNS(device_id BIGINT PATH '$')) d2 ON d1.device_id = d2.device_id ) * 1.0 / ( -- 分母部分: (|A| + |B| - |A ∩ B|) (并集的大小) JSON_LENGTH(u1.devices) + -- |A| 集合A的大小 JSON_LENGTH(u2.devices) - -- |B| 集合B的大小 ( -- |A ∩ B| 交集的大?。ㄔ俅斡?jì)算用于分母) SELECT COUNT(DISTINCT d1.device_id) FROM JSON_TABLE(u1.devices, '$[*]' COLUMNS(device_id BIGINT PATH '$')) d1 INNER JOIN JSON_TABLE(u2.devices, '$[*]' COLUMNS(device_id BIGINT PATH '$')) d2 ON d1.device_id = d2.device_id ) ) END AS device_sim, -- 銀行卡相似度 (Jaccard系數(shù)): |A ∩ B| / (|A| + |B| - |A ∩ B|) CASE WHEN u1.cards IS NULL OR u2.cards IS NULL OR JSON_LENGTH(u1.cards) = 0 OR JSON_LENGTH(u2.cards) = 0 THEN 0 ELSE ( -- 分子部分: |A ∩ B| (交集的大小) SELECT COUNT(DISTINCT c1.card_id) FROM JSON_TABLE(u1.cards, '$[*]' COLUMNS(card_id BIGINT PATH '$')) c1 INNER JOIN JSON_TABLE(u2.cards, '$[*]' COLUMNS(card_id BIGINT PATH '$')) c2 ON c1.card_id = c2.card_id ) * 1.0 / ( -- 分母部分: (|A| + |B| - |A ∩ B|) (并集的大小) JSON_LENGTH(u1.cards) + -- |A| 集合A的大小 JSON_LENGTH(u2.cards) - -- |B| 集合B的大小 ( -- |A ∩ B| 交集的大?。ㄔ俅斡?jì)算用于分母) SELECT COUNT(DISTINCT c1.card_id) FROM JSON_TABLE(u1.cards, '$[*]' COLUMNS(card_id BIGINT PATH '$')) c1 INNER JOIN JSON_TABLE(u2.cards, '$[*]' COLUMNS(card_id BIGINT PATH '$')) c2 ON c1.card_id = c2.card_id ) ) END AS card_sim, -- IP相似度 (Jaccard系數(shù)): |A ∩ B| / (|A| + |B| - |A ∩ B|) CASE WHEN u1.ips IS NULL OR u2.ips IS NULL OR JSON_LENGTH(u1.ips) = 0 OR JSON_LENGTH(u2.ips) = 0 THEN 0 ELSE ( -- 分子部分: |A ∩ B| (交集的大小) SELECT COUNT(DISTINCT i1.ip_id) FROM JSON_TABLE(u1.ips, '$[*]' COLUMNS(ip_id BIGINT PATH '$')) i1 INNER JOIN JSON_TABLE(u2.ips, '$[*]' COLUMNS(ip_id BIGINT PATH '$')) i2 ON i1.ip_id = i2.ip_id ) * 1.0 / ( -- 分母部分: (|A| + |B| - |A ∩ B|) (并集的大小) JSON_LENGTH(u1.ips) + -- |A| 集合A的大小 JSON_LENGTH(u2.ips) - -- |B| 集合B的大小 ( -- |A ∩ B| 交集的大小(再次計(jì)算用于分母) SELECT COUNT(DISTINCT i1.ip_id) FROM JSON_TABLE(u1.ips, '$[*]' COLUMNS(ip_id BIGINT PATH '$')) i1 INNER JOIN JSON_TABLE(u2.ips, '$[*]' COLUMNS(ip_id BIGINT PATH '$')) i2 ON i1.ip_id = i2.ip_id ) ) END AS ip_sim FROM user_entities u1 JOIN user_entities u2 ON u2.user_id IN (SELECT node_id FROM black_users) WHERE u1.user_id NOT IN (SELECT node_id FROM black_users) -- 排除已知黑產(chǎn) ) -- 最終結(jié)果查詢 SELECT u.properties->>'$.name' AS target_user, u.properties->>'$.phone' AS phone, CAST(u.properties->>'$.risk_score' AS UNSIGNED) AS risk_score, bu.properties->>'$.name' AS black_user, ROUND(sc.device_sim, 3) AS device_similarity, ROUND(sc.card_sim, 3) AS card_similarity, ROUND(sc.ip_sim, 3) AS ip_similarity, ROUND((sc.device_sim * 0.5 + sc.card_sim * 0.3 + sc.ip_sim * 0.2), 3) AS total_similarity, CASE WHEN (sc.device_sim * 0.5 + sc.card_sim * 0.3 + sc.ip_sim * 0.2) > 0.7 THEN '高風(fēng)險' WHEN (sc.device_sim * 0.5 + sc.card_sim * 0.3 + sc.ip_sim * 0.2) > 0.4 THEN '中風(fēng)險' ELSE '低風(fēng)險' END AS risk_level FROM similarity_calc sc JOIN node u ON sc.target_user = u.node_id JOIN node bu ON sc.black_user = bu.node_id ORDER BY total_similarity DESC LIMIT 5;
效果:
四、項(xiàng)目實(shí)戰(zhàn)
基于MySQL搭建的圖數(shù)據(jù)庫,模擬實(shí)現(xiàn)好友推薦功能。
數(shù)據(jù)準(zhǔn)備:
-- 創(chuàng)建用戶 INSERT INTO node (properties) VALUES ('{"type":"user","name":"張三","age":25,"city":"北京"}'), ('{"type":"user","name":"李四","age":28,"city":"北京"}'), ('{"type":"user","name":"王五","age":30,"city":"上海"}'), ('{"type":"user","name":"趙六","age":26,"city":"廣州"}'), ('{"type":"user","name":"錢七","age":27,"city":"深圳"}'), ('{"type":"user","name":"Jack","age":18,"city":"杭州"}'), ('{"type":"user","name":"Tom","age":45,"city":"貴州"}'), ('{"type":"user","name":"Mike","age":35,"city":"上海"}'); -- 創(chuàng)建好友關(guān)系 INSERT INTO edge (source_id, target_id, properties) VALUES (1,2, '{"type":"friend"}'), (1,3, '{"type":"friend"}'), (2,4, '{"type":"friend"}'), (3,5, '{"type":"friend"}'), (4,5, '{"type":"friend"}'), (6,7, '{"type":"friend"}'), (7,8, '{"type":"friend"}');
具體實(shí)現(xiàn)
-- 綜合推薦算法:為張三推薦3個好友,排除現(xiàn)有好友 WITH target_user AS ( SELECT node_id, properties->>'$.city' AS city FROM node WHERE properties->>'$.name' = '張三' ), existing_friends AS ( SELECT target_id FROM edge WHERE source_id = (SELECT node_id FROM target_user) AND properties->>'$.type' = 'friend' ), common_friends AS ( SELECT f2.target_id AS candidate_id, COUNT(*) AS common_friend_count FROM edge f1 JOIN edge f2 ON f1.target_id = f2.source_id WHERE f1.source_id = (SELECT node_id FROM target_user) AND f2.target_id NOT IN (SELECT target_id FROM existing_friends) -- 排除現(xiàn)有好友 AND f2.target_id != (SELECT node_id FROM target_user) -- 排除自己 AND f1.properties->>'$.type' = 'friend' AND f2.properties->>'$.type' = 'friend' GROUP BY f2.target_id ), same_city AS ( SELECT n.node_id AS candidate_id, 1 AS same_city_score FROM node n WHERE n.properties->>'$.city' = (SELECT city FROM target_user) AND n.node_id != (SELECT node_id FROM target_user) AND n.node_id NOT IN (SELECT target_id FROM existing_friends) -- 排除現(xiàn)有好友 ), final_candidates AS ( SELECT cf.candidate_id, COALESCE(cf.common_friend_count, 0) AS common_friends, COALESCE(sc.same_city_score, 0) AS same_city, COALESCE(cf.common_friend_count, 0) * 0.6 + COALESCE(sc.same_city_score, 0) * 0.4 AS recommendation_score FROM common_friends cf LEFT JOIN same_city sc ON cf.candidate_id = sc.candidate_id UNION ALL SELECT sc.candidate_id, 0 AS common_friends, sc.same_city_score AS same_city, sc.same_city_score * 0.4 AS recommendation_score FROM same_city sc WHERE sc.candidate_id NOT IN (SELECT candidate_id FROM common_friends) ) SELECT n.properties->>'$.name' AS recommended_name, fc.common_friends, fc.same_city, fc.recommendation_score FROM final_candidates fc JOIN node n ON fc.candidate_id = n.node_id ORDER BY recommendation_score DESC LIMIT 3;
效果展示
可以看到最后只給張三推薦了趙六和錢七,并沒有推薦Tom、Jack等用戶。
到此這篇關(guān)于基于MySQL實(shí)現(xiàn)基礎(chǔ)圖數(shù)據(jù)庫的詳細(xì)步驟的文章就介紹到這了,更多相關(guān)MySQL圖數(shù)據(jù)庫內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
mysql配置模板(my-*.cnf)參數(shù)詳細(xì)說明
這篇文章主要介紹了mysql配置模板就是mysql的配置文件參數(shù)說明,需要的朋友可以參考下2015-01-01在Windows系統(tǒng)上使用壓縮歸檔文件安裝MySQL的步驟
這篇文章主要介紹了在Windows系統(tǒng)上使用壓縮歸檔文件安裝MySQL的步驟,非常不錯,具有一定的參考借鑒加載,需要的朋友可以參考下2018-06-06order?by?+?limit分頁時數(shù)據(jù)重復(fù)問題及解決方法
這篇文章主要介紹了order?by?+?limit分頁時數(shù)據(jù)重復(fù),本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2023-03-03centos7中如何利用crontab進(jìn)行mysql定時備份
crontab是一個命令,常見于Unix和類Unix的操作系統(tǒng)之中,用于設(shè)置周期性被執(zhí)行的指令,下面這篇文章主要給大家介紹了關(guān)于centos7中如何利用crontab進(jìn)行mysql定時備份的相關(guān)資料,需要的朋友可以參考下2022-02-02