Python langchain ReAct 使用范例詳解
0. 介紹
ReAct: Reasoning + Acting ,ReAct Prompt 由 few-shot task-solving trajectories 組成,包括人工編寫的文本推理過程和動作,以及對動作的環(huán)境觀察。
1. 范例
langchain version 0.3.7
$ pip show langchain Name: langchain Version: 0.3.7 Summary: Building applications with LLMs through composability Home-page: https://github.com/langchain-ai/langchain Author: Author-email: License: MIT Location: /home/xjg/.conda/envs/langchain/lib/python3.10/site-packages Requires: aiohttp, async-timeout, langchain-core, langchain-text-splitters, langsmith, numpy, pydantic, PyYAML, requests, SQLAlchemy, tenacity Required-by: langchain-community
1.1 使用第三方工具
Google 搜索對接
第三方平臺:https://serpapi.com
LangChain API 封裝:SerpAPI
1.1.1 簡單使用工具
from langchain_community.utilities import SerpAPIWrapper import os # 刪除all_proxy環(huán)境變量 if 'all_proxy' in os.environ: del os.environ['all_proxy'] # 刪除ALL_PROXY環(huán)境變量 if 'ALL_PROXY' in os.environ: del os.environ['ALL_PROXY'] os.environ["SERPAPI_API_KEY"] = "xxx" params = { "engine": "bing", "gl": "us", "hl": "en", } search = SerpAPIWrapper(params=params) result = search.run("Obama's first name?") print(result)
輸出結果:
['In 1975, when Obama started high school in Hawaii, teacher Eric Kusunoki read the roll call and stumbled on Obama\'s first name. "Is Barack here?" he asked, pronouncing it BAR-rack .', "Barack Obama, the 44th president of the United States, was born on August 4, 1961, in Honolulu, Hawaii to Barack Obama, Sr. (1936–1982) (born in Oriang' Kogelo of Rachuonyo North District, Kenya) and Stanley Ann Dunham, known as Ann (1942–1995) (born in Wichita, Kansas, United States). Obama spent most of his childhood years in Honolulu, where his mother attended the University of Hawai?i at Mānoa", 'Barack Obama is named after his father, who was a Kenyan economist (called under the same name). He’s first real given name is “Barak”, also spelled Baraq (Not to be confused with Barack which is is a building or group of buildings …', 'Nevertheless, he was proud enough of his formal name that after he and Ann Dunham married in 1961, they named their son, Barack Hussein Obama II. As a youngster, the former president likely never...', 'https://www.britannica.com/biography/Barack-Obama', 'The name Barack means "one who is blessed" in Swahili. Obama was the first African-American U.S. president. Obama was the first president born outside of the contiguous United States. Obama was the eighth left-handed …', 'Barack Obama is the first Black president of the United States. Learn facts about him: his age, height, leadership legacy, quotes, family, and more.', 'Barack and Ann’s son, Barack Hussein Obama Jr., was born in Honolulu on August 4, 1961. Did you know? Not only was Obama the first African American president, he was also the first to be...', "President Obama's full name is Barack Hussein Obama. His full, birth name is Barack Hussein Obama, II. He was named after his father, Barack Hussein Obama, Sr., who …", 'When Barack Obama was elected president in 2008, he became the first African American to hold the office. The framers of the Constitution always hoped that our leadership would not be limited...']
1.1.2 使用第三方工具時ReAct
提示詞 hwchase17/self-ask-with-search
from langchain_community.utilities import SerpAPIWrapper from langchain.agents import create_self_ask_with_search_agent, AgentType,Tool,AgentExecutor from langchain import hub from langchain_openai import ChatOpenAI import os from dotenv import load_dotenv, find_dotenv # 刪除all_proxy環(huán)境變量 if 'all_proxy' in os.environ: del os.environ['all_proxy'] # 刪除ALL_PROXY環(huán)境變量 if 'ALL_PROXY' in os.environ: del os.environ['ALL_PROXY'] _ = load_dotenv(find_dotenv()) os.environ["SERPAPI_API_KEY"] = "xxx" chat_model = ChatOpenAI(model="gpt-4o-mini", temperature=0) # 實例化查詢工具 search = SerpAPIWrapper() tools = [ Tool( name="Intermediate Answer", func=search.run, description="useful for when you need to ask with search", ) ] prompt = hub.pull("hwchase17/self-ask-with-search") self_ask_with_search = create_self_ask_with_search_agent( chat_model,tools,prompt ) agent_executor = AgentExecutor(agent=self_ask_with_search, tools=tools,verbose=True,handle_parsing_errors=True) reponse = agent_executor.invoke({"input": "成都舉辦的大運會是第幾屆大運會?2023年大運會舉辦地在哪里?"}) print(reponse) print(chat_model.invoke("成都舉辦的大運會是第幾屆大運會?").content) print(chat_model.invoke("2023年大運會舉辦地在哪里?").content)
輸出:
> Entering new AgentExecutor chain...
Could not parse output: Yes.
Follow up: 成都舉辦的大運會是由哪個組織舉辦的?1. **成都舉辦的大運會是第幾屆大運會?**
- The 2023 Chengdu Universiade was the 31st Summer Universiade.2. **2023年大運會舉辦地在哪里?**
- The 2023 Summer Universiade was held in Chengdu, China.So the final answers are:
- 成都舉辦的大運會是第31屆大運會。
- 2023年大運會舉辦地是成都,China。如果你還有其他問題或需要進一步的澄清,請隨時問我!
For troubleshooting, visit: https://python.langchain.com/docs/troubleshooting/errors/OUTPUT_PARSING_FAILUREInvalid or incomplete response> Finished chain.
{'input': '成都舉辦的大運會是第幾屆大運會?2023年大運會舉辦地在哪里?', 'output': '31屆,成都,China'}
成都舉辦的世界大學生運動會是第31屆大運會。該屆大運會于2023年在中國成都舉行。
2023年大運會(世界大學生運動會)將于2023年在中國成都舉辦。
1.2 使用langchain內(nèi)置的工具
from langchain.agents import create_react_agent, AgentType,Tool,AgentExecutor from langchain import hub from langchain_community.agent_toolkits.load_tools import load_tools from langchain.prompts import PromptTemplate from dotenv import load_dotenv, find_dotenv from langchain_openai import ChatOpenAI import os # 刪除all_proxy環(huán)境變量 if 'all_proxy' in os.environ: del os.environ['all_proxy'] # 刪除ALL_PROXY環(huán)境變量 if 'ALL_PROXY' in os.environ: del os.environ['ALL_PROXY'] _ = load_dotenv(find_dotenv()) os.environ["SERPAPI_API_KEY"] = "xxx" chat_model = ChatOpenAI(model="gpt-4o-mini", temperature=0) prompt = hub.pull("hwchase17/react") tools = load_tools(["serpapi", "llm-math"], llm=chat_model) agent = create_react_agent(chat_model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools,verbose=True) reponse =agent_executor.invoke({"input": "誰是萊昂納多·迪卡普里奧的女朋友?她現(xiàn)在年齡的0.43次方是多少?"}) print(reponse)
輸出:
> Entering new AgentExecutor chain...
我需要先找到萊昂納多·迪卡普里奧目前的女朋友是誰,然后獲取她的年齡以計算年齡的0.43次方。
Action: Search
Action Input: "Leonardo DiCaprio girlfriend 2023"
Vittoria Ceretti我找到萊昂納多·迪卡普里奧的女朋友是維多利亞·切雷提(Vittoria Ceretti)。接下來,我需要找到她的年齡以計算0.43次方。
Action: Search
Action Input: "Vittoria Ceretti age 2023"About 25 years維多利亞·切雷提(Vittoria Ceretti)大約25歲。接下來,我將計算25的0.43次方。
Action: Calculator
Action Input: 25 ** 0.43Answer: 3.991298452658078我現(xiàn)在知道最終答案
Final Answer: 萊昂納多·迪卡普里奧的女朋友是維多利亞·切雷提,她的年齡0.43次方約為3.99。> Finished chain.
{'input': '誰是萊昂納多·迪卡普里奧的女朋友?她現(xiàn)在年齡的0.43次方是多少?', 'output': '萊昂納多·迪卡普里奧的女朋友是維多利亞·切雷提,她的年齡0.43次方約為3.99。'}
1.3 使用自定義的工具
hwchase17/openai-functions-agent
1.3.1 簡單使用
from langchain_openai import ChatOpenAI from langchain.agents import tool,AgentExecutor,create_openai_functions_agent from langchain import hub import os from dotenv import load_dotenv, find_dotenv # 刪除all_proxy環(huán)境變量 if 'all_proxy' in os.environ: del os.environ['all_proxy'] # 刪除ALL_PROXY環(huán)境變量 if 'ALL_PROXY' in os.environ: del os.environ['ALL_PROXY'] _ = load_dotenv(find_dotenv()) chat_model = ChatOpenAI(model="gpt-4o-mini",temperature=0) @tool def get_word_length(word: str) -> int: """Returns the length of a word.""" return len(word) tools = [get_word_length] prompt = hub.pull("hwchase17/openai-functions-agent") agent = create_openai_functions_agent(llm=chat_model, tools=tools, prompt=prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True,handle_parsing_errors=True) agent_executor.invoke({"input": "單詞“educati”中有多少個字母?"})
輸出:
> Entering new AgentExecutor chain...
Invoking: `get_word_length` with `{'word': 'educati'}`
7單詞“educati”中有7個字母。
> Finished chain.
1.3.1 帶有記憶功能
from langchain_openai import ChatOpenAI from langchain.agents import tool,AgentExecutor,create_openai_functions_agent from langchain_core.prompts.chat import ChatPromptTemplate from langchain.prompts import MessagesPlaceholder from langchain.memory import ConversationBufferMemory from langchain import hub import os from dotenv import load_dotenv, find_dotenv # 刪除all_proxy環(huán)境變量 if 'all_proxy' in os.environ: del os.environ['all_proxy'] # 刪除ALL_PROXY環(huán)境變量 if 'ALL_PROXY' in os.environ: del os.environ['ALL_PROXY'] _ = load_dotenv(find_dotenv()) chat_model = ChatOpenAI(model="gpt-4o-mini",temperature=0) @tool def get_word_length(word: str) -> int: """Returns the length of a word.""" return len(word) tools = [get_word_length] prompt = ChatPromptTemplate.from_messages( [ ("placeholder", "{chat_history}"), ("human", "{input}"), ("placeholder", "{agent_scratchpad}"), ] ) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) agent = create_openai_functions_agent(llm=chat_model, tools=tools, prompt=prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory, verbose=True) agent_executor.invoke({"input":"單詞“educati”中有多少個字母?"}) agent_executor.invoke({"input":"那是一個真實的單詞嗎?"})
輸出:
> Entering new AgentExecutor chain...
Invoking: `get_word_length` with `{'word': 'educati'}`
7
單詞“educati”中有7個字母。
> Finished chain.
> Entering new AgentExecutor chain...
“educati”并不是一個標準的英語單詞。它可能是“education”的一個變形或拼寫錯誤。標準英語中的相關詞是“education”,意為“教育”。> Finished chain.
2. 參考
LangChain Hub https://smith.langchain.com/hub/
LangChain https://python.langchain.com/docs/introduction/
DevAGI開放平臺 https://devcto.com/
到此這篇關于Python langchain ReAct 使用范例的文章就介紹到這了,更多相關Python langchain ReAct 使用內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
相關文章
解決vue bus.$emit觸發(fā)第一次$on監(jiān)聽不到問題
這篇文章主要介紹了解決vue bus.$emit觸發(fā)第一次$on監(jiān)聽不到問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-07-07Vue2.0+Vux搭建一個完整的移動webApp項目的示例
這篇文章主要介紹了Vue2.0+Vux搭建一個完整的移動webApp項目的示例,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2019-03-03mockjs+vue頁面直接展示數(shù)據(jù)的方法
這篇文章主要介紹了mockjs+vue頁面直接展示數(shù)據(jù)的方法,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2018-12-12