springboot的http.server.requests服務(wù)請(qǐng)求流程源碼
序
本文主要研究一下springboot的http.server.requests
http.server.requests
org/springframework/boot/actuate/autoconfigure/metrics/MetricsProperties.java
public static class Server { private final ServerRequest request = new ServerRequest(); /** * Maximum number of unique URI tag values allowed. After the max number of * tag values is reached, metrics with additional tag values are denied by * filter. */ private int maxUriTags = 100; public ServerRequest getRequest() { return this.request; } public int getMaxUriTags() { return this.maxUriTags; } public void setMaxUriTags(int maxUriTags) { this.maxUriTags = maxUriTags; } public static class ServerRequest { /** * Name of the metric for received requests. */ private String metricName = "http.server.requests"; /** * Whether the trailing slash should be ignored when recording metrics. */ private boolean ignoreTrailingSlash = true; //...... } }
MetricsProperties.Server.ServerRequest定義了http.server.requests這個(gè)metrics名
WebMvcMetricsAutoConfiguration
org/springframework/boot/actuate/autoconfigure/metrics/web/servlet/WebMvcMetricsAutoConfiguration.java
@Configuration(proxyBeanMethods = false) @AutoConfigureAfter({ MetricsAutoConfiguration.class, CompositeMeterRegistryAutoConfiguration.class, SimpleMetricsExportAutoConfiguration.class }) @ConditionalOnWebApplication(type = ConditionalOnWebApplication.Type.SERVLET) @ConditionalOnClass(DispatcherServlet.class) @ConditionalOnBean(MeterRegistry.class) @EnableConfigurationProperties(MetricsProperties.class) public class WebMvcMetricsAutoConfiguration { private final MetricsProperties properties; public WebMvcMetricsAutoConfiguration(MetricsProperties properties) { this.properties = properties; } @Bean @ConditionalOnMissingBean(WebMvcTagsProvider.class) public DefaultWebMvcTagsProvider webMvcTagsProvider(ObjectProvider<WebMvcTagsContributor> contributors) { return new DefaultWebMvcTagsProvider(this.properties.getWeb().getServer().getRequest().isIgnoreTrailingSlash(), contributors.orderedStream().collect(Collectors.toList())); } @Bean public FilterRegistrationBean<WebMvcMetricsFilter> webMvcMetricsFilter(MeterRegistry registry, WebMvcTagsProvider tagsProvider) { ServerRequest request = this.properties.getWeb().getServer().getRequest(); WebMvcMetricsFilter filter = new WebMvcMetricsFilter(registry, tagsProvider, request.getMetricName(), request.getAutotime()); FilterRegistrationBean<WebMvcMetricsFilter> registration = new FilterRegistrationBean<>(filter); registration.setOrder(Ordered.HIGHEST_PRECEDENCE + 1); registration.setDispatcherTypes(DispatcherType.REQUEST, DispatcherType.ASYNC); return registration; } @Bean @Order(0) public MeterFilter metricsHttpServerUriTagFilter() { String metricName = this.properties.getWeb().getServer().getRequest().getMetricName(); MeterFilter filter = new OnlyOnceLoggingDenyMeterFilter( () -> String.format("Reached the maximum number of URI tags for '%s'.", metricName)); return MeterFilter.maximumAllowableTags(metricName, "uri", this.properties.getWeb().getServer().getMaxUriTags(), filter); } @Bean public MetricsWebMvcConfigurer metricsWebMvcConfigurer(MeterRegistry meterRegistry, WebMvcTagsProvider tagsProvider) { return new MetricsWebMvcConfigurer(meterRegistry, tagsProvider); } }
WebMvcMetricsAutoConfiguration定義了webMvcTagsProvider,可以接收WebMvcTagsContributor對(duì)tag進(jìn)行定制,還注冊(cè)了WebMvcMetricsFilter、MeterFilter、metricsWebMvcConfigurer
DefaultWebMvcTagsProvider
org/springframework/boot/actuate/metrics/web/servlet/DefaultWebMvcTagsProvider.java
public class DefaultWebMvcTagsProvider implements WebMvcTagsProvider { private final boolean ignoreTrailingSlash; private final List<WebMvcTagsContributor> contributors; public DefaultWebMvcTagsProvider() { this(false); } /** * Creates a new {@link DefaultWebMvcTagsProvider} that will provide tags from the * given {@code contributors} in addition to its own. * @param contributors the contributors that will provide additional tags * @since 2.3.0 */ public DefaultWebMvcTagsProvider(List<WebMvcTagsContributor> contributors) { this(false, contributors); } public DefaultWebMvcTagsProvider(boolean ignoreTrailingSlash) { this(ignoreTrailingSlash, Collections.emptyList()); } /** * Creates a new {@link DefaultWebMvcTagsProvider} that will provide tags from the * given {@code contributors} in addition to its own. * @param ignoreTrailingSlash whether trailing slashes should be ignored when * determining the {@code uri} tag. * @param contributors the contributors that will provide additional tags * @since 2.3.0 */ public DefaultWebMvcTagsProvider(boolean ignoreTrailingSlash, List<WebMvcTagsContributor> contributors) { this.ignoreTrailingSlash = ignoreTrailingSlash; this.contributors = contributors; } @Override public Iterable<Tag> getTags(HttpServletRequest request, HttpServletResponse response, Object handler, Throwable exception) { Tags tags = Tags.of(WebMvcTags.method(request), WebMvcTags.uri(request, response, this.ignoreTrailingSlash), WebMvcTags.exception(exception), WebMvcTags.status(response), WebMvcTags.outcome(response)); for (WebMvcTagsContributor contributor : this.contributors) { tags = tags.and(contributor.getTags(request, response, handler, exception)); } return tags; } @Override public Iterable<Tag> getLongRequestTags(HttpServletRequest request, Object handler) { Tags tags = Tags.of(WebMvcTags.method(request), WebMvcTags.uri(request, null, this.ignoreTrailingSlash)); for (WebMvcTagsContributor contributor : this.contributors) { tags = tags.and(contributor.getLongRequestTags(request, handler)); } return tags; } }
DefaultWebMvcTagsProvider實(shí)現(xiàn)了WebMvcTagsProvider接口,其構(gòu)造器可以接收WebMvcTagsContributor,對(duì)tag進(jìn)行定制;默認(rèn)的tag為WebMvcTags.method(method)、WebMvcTags.uri(uri)、WebMvcTags.exception(exception)、WebMvcTags.status(status)、WebMvcTags.outcome(outcome)
WebMvcMetricsFilter
org/springframework/boot/actuate/metrics/web/servlet/WebMvcMetricsFilter.java
public class WebMvcMetricsFilter extends OncePerRequestFilter { private final MeterRegistry registry; private final WebMvcTagsProvider tagsProvider; private final String metricName; private final AutoTimer autoTimer; /** * Create a new {@link WebMvcMetricsFilter} instance. * @param registry the meter registry * @param tagsProvider the tags provider * @param metricName the metric name * @param autoTimer the auto-timers to apply or {@code null} to disable auto-timing * @since 2.2.0 */ public WebMvcMetricsFilter(MeterRegistry registry, WebMvcTagsProvider tagsProvider, String metricName, AutoTimer autoTimer) { this.registry = registry; this.tagsProvider = tagsProvider; this.metricName = metricName; this.autoTimer = autoTimer; } @Override protected boolean shouldNotFilterAsyncDispatch() { return false; } @Override protected void doFilterInternal(HttpServletRequest request, HttpServletResponse response, FilterChain filterChain) throws ServletException, IOException { TimingContext timingContext = TimingContext.get(request); if (timingContext == null) { timingContext = startAndAttachTimingContext(request); } try { filterChain.doFilter(request, response); if (!request.isAsyncStarted()) { // Only record when async processing has finished or never been started. // If async was started by something further down the chain we wait // until the second filter invocation (but we'll be using the // TimingContext that was attached to the first) Throwable exception = (Throwable) request.getAttribute(DispatcherServlet.EXCEPTION_ATTRIBUTE); record(timingContext, request, response, exception); } } catch (NestedServletException ex) { response.setStatus(HttpStatus.INTERNAL_SERVER_ERROR.value()); record(timingContext, request, response, ex.getCause()); throw ex; } catch (ServletException | IOException | RuntimeException ex) { record(timingContext, request, response, ex); throw ex; } } //...... }
WebMvcMetricsFilter繼承了OncePerRequestFilter,其doFilterInternal方法通過TimingContext來維護(hù)timerSample,然后在filterChain.doFilter(request, response)之后進(jìn)行record
record
private void record(TimingContext timingContext, HttpServletRequest request, HttpServletResponse response, Throwable exception) { Object handler = getHandler(request); Set<Timed> annotations = getTimedAnnotations(handler); Timer.Sample timerSample = timingContext.getTimerSample(); if (annotations.isEmpty()) { if (this.autoTimer.isEnabled()) { Builder builder = this.autoTimer.builder(this.metricName); timerSample.stop(getTimer(builder, handler, request, response, exception)); } } else { for (Timed annotation : annotations) { Builder builder = Timer.builder(annotation, this.metricName); timerSample.stop(getTimer(builder, handler, request, response, exception)); } } } private Timer getTimer(Builder builder, Object handler, HttpServletRequest request, HttpServletResponse response, Throwable exception) { return builder.tags(this.tagsProvider.getTags(request, response, handler, exception)).register(this.registry); }
record方法主要執(zhí)行timerSample.stop(getTimer(builder, handler, request, response, exception))
timerSample
micrometer-core-1.5.9.jar!/io/micrometer/core/instrument/Timer.class
public static class Sample { private Tags tags = Tags.empty(); private final long startTime; private final Clock clock; Sample(Clock clock) { this.clock = clock; this.startTime = clock.monotonicTime(); } public long stop(Timer timer) { long durationNs = this.clock.monotonicTime() - this.startTime; timer.record(durationNs, TimeUnit.NANOSECONDS); return durationNs; } @Incubating( since = "1.4.0" ) public long stop(MeterRegistry registry, Builder timerBuilder) { return this.stop(timerBuilder.tags((Iterable)this.tags).register(registry)); } @Incubating( since = "1.4.0" ) public Sample tags(String... tags) { return this.tags((Iterable)Tags.of(tags)); } @Incubating( since = "1.4.0" ) public Sample tags(Iterable<Tag> tags) { this.tags = this.tags.and(tags); return this; } }
Timer.Sample的stop方法主要執(zhí)行timer.record(durationNs, TimeUnit.NANOSECONDS)
PrometheusTimer
io/micrometer/prometheus/PrometheusTimer.java
public class PrometheusTimer extends AbstractTimer { private static final CountAtBucket[] EMPTY_HISTOGRAM = new CountAtBucket[0]; private final LongAdder count = new LongAdder(); private final LongAdder totalTime = new LongAdder(); private final TimeWindowMax max; private final HistogramFlavor histogramFlavor; @Nullable private final Histogram histogram; PrometheusTimer(Id id, Clock clock, DistributionStatisticConfig distributionStatisticConfig, PauseDetector pauseDetector, HistogramFlavor histogramFlavor) { super(id, clock, DistributionStatisticConfig.builder() .percentilesHistogram(false) .serviceLevelObjectives() .build() .merge(distributionStatisticConfig), pauseDetector, TimeUnit.SECONDS, false); this.histogramFlavor = histogramFlavor; this.max = new TimeWindowMax(clock, distributionStatisticConfig); if (distributionStatisticConfig.isPublishingHistogram()) { switch (histogramFlavor) { case Prometheus: histogram = new TimeWindowFixedBoundaryHistogram(clock, DistributionStatisticConfig.builder() .expiry(Duration.ofDays(1825)) // effectively never roll over .bufferLength(1) .build() .merge(distributionStatisticConfig), true); break; case VictoriaMetrics: histogram = new FixedBoundaryVictoriaMetricsHistogram(); break; default: histogram = null; break; } } else { histogram = null; } } @Override protected void recordNonNegative(long amount, TimeUnit unit) { count.increment(); long nanoAmount = TimeUnit.NANOSECONDS.convert(amount, unit); totalTime.add(nanoAmount); max.record(nanoAmount, TimeUnit.NANOSECONDS); if (histogram != null) histogram.recordLong(TimeUnit.NANOSECONDS.convert(amount, unit)); } @Override public long count() { return count.longValue(); } @Override public double totalTime(TimeUnit unit) { return TimeUtils.nanosToUnit(totalTime.doubleValue(), unit); } @Override public double max(TimeUnit unit) { return max.poll(unit); } public HistogramFlavor histogramFlavor() { return histogramFlavor; } /** * For Prometheus we cannot use the histogram counts from HistogramSnapshot, as it is based on a * rolling histogram. Prometheus requires a histogram that accumulates values over the lifetime of the app. * * @return Cumulative histogram buckets. */ public CountAtBucket[] histogramCounts() { return histogram == null ? EMPTY_HISTOGRAM : histogram.takeSnapshot(0, 0, 0).histogramCounts(); } @Override public HistogramSnapshot takeSnapshot() { HistogramSnapshot snapshot = super.takeSnapshot(); if (histogram == null) { return snapshot; } return new HistogramSnapshot(snapshot.count(), snapshot.total(), snapshot.max(), snapshot.percentileValues(), histogramCounts(), snapshot::outputSummary); } }
PrometheusTimer繼承了AbstractTimer,默認(rèn)histogram為null
PrometheusMeterRegistry
io/micrometer/prometheus/PrometheusMeterRegistry.java
protected io.micrometer.core.instrument.Timer newTimer(Meter.Id id, DistributionStatisticConfig distributionStatisticConfig, PauseDetector pauseDetector) { PrometheusTimer timer = new PrometheusTimer(id, clock, distributionStatisticConfig, pauseDetector, prometheusConfig.histogramFlavor()); applyToCollector(id, (collector) -> addDistributionStatisticSamples(distributionStatisticConfig, collector, timer, tagValues(id), false)); return timer; }
PrometheusMeterRegistry的newTimer創(chuàng)建的是PrometheusTimer,同時(shí)applyToCollector調(diào)用了addDistributionStatisticSamples
addDistributionStatisticSamples
private void addDistributionStatisticSamples(DistributionStatisticConfig distributionStatisticConfig, MicrometerCollector collector, HistogramSupport histogramSupport, List<String> tagValues, boolean forLongTaskTimer) { collector.add(tagValues, (conventionName, tagKeys) -> { Stream.Builder<Collector.MetricFamilySamples.Sample> samples = Stream.builder(); HistogramSnapshot histogramSnapshot = histogramSupport.takeSnapshot(); ValueAtPercentile[] percentileValues = histogramSnapshot.percentileValues(); CountAtBucket[] histogramCounts = histogramSnapshot.histogramCounts(); double count = histogramSnapshot.count(); if (percentileValues.length > 0) { List<String> quantileKeys = new LinkedList<>(tagKeys); quantileKeys.add("quantile"); // satisfies https://prometheus.io/docs/concepts/metric_types/#summary for (ValueAtPercentile v : percentileValues) { List<String> quantileValues = new LinkedList<>(tagValues); quantileValues.add(Collector.doubleToGoString(v.percentile())); samples.add(new Collector.MetricFamilySamples.Sample( conventionName, quantileKeys, quantileValues, v.value(TimeUnit.SECONDS))); } } Collector.Type type = distributionStatisticConfig.isPublishingHistogram() ? Collector.Type.HISTOGRAM : Collector.Type.SUMMARY; if (histogramCounts.length > 0) { // Prometheus doesn't balk at a metric being BOTH a histogram and a summary type = Collector.Type.HISTOGRAM; List<String> histogramKeys = new LinkedList<>(tagKeys); String sampleName = conventionName + "_bucket"; switch (prometheusConfig.histogramFlavor()) { case Prometheus: histogramKeys.add("le"); // satisfies https://prometheus.io/docs/concepts/metric_types/#histogram for (CountAtBucket c : histogramCounts) { final List<String> histogramValues = new LinkedList<>(tagValues); histogramValues.add(Collector.doubleToGoString(c.bucket(TimeUnit.SECONDS))); samples.add(new Collector.MetricFamilySamples.Sample( sampleName, histogramKeys, histogramValues, c.count())); } // the +Inf bucket should always equal `count` final List<String> histogramValues = new LinkedList<>(tagValues); histogramValues.add("+Inf"); samples.add(new Collector.MetricFamilySamples.Sample( sampleName, histogramKeys, histogramValues, count)); break; case VictoriaMetrics: histogramKeys.add("vmrange"); for (CountAtBucket c : histogramCounts) { final List<String> histogramValuesVM = new LinkedList<>(tagValues); histogramValuesVM.add(FixedBoundaryVictoriaMetricsHistogram.getRangeTagValue(c.bucket())); samples.add(new Collector.MetricFamilySamples.Sample( sampleName, histogramKeys, histogramValuesVM, c.count())); } break; default: break; } } samples.add(new Collector.MetricFamilySamples.Sample( conventionName + (forLongTaskTimer ? "_active_count" : "_count"), tagKeys, tagValues, count)); samples.add(new Collector.MetricFamilySamples.Sample( conventionName + (forLongTaskTimer ? "_duration_sum" : "_sum"), tagKeys, tagValues, histogramSnapshot.total(TimeUnit.SECONDS))); return Stream.of(new MicrometerCollector.Family(type, conventionName, samples.build()), new MicrometerCollector.Family(Collector.Type.GAUGE, conventionName + "_max", Stream.of( new Collector.MetricFamilySamples.Sample(conventionName + "_max", tagKeys, tagValues, histogramSnapshot.max(getBaseTimeUnit()))))); }); }
addDistributionStatisticSamples會(huì)判斷isPublishingHistogram,是則發(fā)布HISTOGRAM,否則發(fā)布SUMMARY(默認(rèn)為否),之后給samples添加_count及_sum的sample,最后額外添加一個(gè)_max的gauge
示例
示例1
Timer timer = meterRegistry.timer("abc", "a", "b"); timer.record(Duration.of(100, ChronoUnit.SECONDS));
最后產(chǎn)生的metrics如下
# HELP abc_seconds_max # TYPE abc_seconds_max gauge abc_seconds_max{a="b",} 0.0 # HELP abc_seconds # TYPE abc_seconds summary abc_seconds_count{a="b",} 1.0 abc_seconds_sum{a="b",} 100.0
示例2
http.server.requests的prometheus指標(biāo)
# HELP http_server_requests_seconds_max # TYPE http_server_requests_seconds_max gauge http_server_requests_seconds_max{} # TYPE http_server_requests_seconds summary http_server_requests_seconds_count{} http_server_requests_seconds_sum{}
grafana展示
HTTP Server Requests Count
{ "expr": "http_server_requests_seconds_count{instance=\"$instance\", application=\"$application\"}", "format": "time_series", "interval": "", "intervalFactor": 1, "legendFormat": "{{method}} [{{status}}] - {{uri}}", "refId": "A" }
HTTP Server Requests Sum
{ "expr": "http_server_requests_seconds_sum{instance=\"$instance\", application=\"$application\"}", "format": "time_series", "interval": "", "intervalFactor": 1, "legendFormat": "{{method}} [{{status}}] - {{uri}}", "refId": "A" }
HTTP Server Requests Max
{ "expr": "http_server_requests_seconds_max{instance=\"$instance\", application=\"$application\"}", "format": "time_series", "interval": "", "intervalFactor": 1, "legendFormat": "{{method}} [{{status}}] - {{uri}}", "refId": "A" }
Total Requests
{ "expr": "sum(increase(http_server_requests_seconds_count{application=\"$application\", instance=~\"$instance\"}[150s]))", "format": "time_series", "instant": false, "interval": "", "intervalFactor": 1, "legendFormat": "", "refId": "A" }
Request Count
{ "expr": "irate(http_server_requests_seconds_count{instance=\"$instance\", application=\"$application\", uri!~\".*actuator.*\"}[5m])", "format": "time_series", "interval": "", "intervalFactor": 1, "legendFormat": "{{method}} [{{status}}] - {{uri}} -{{reqPath}}", "refId": "A" }
Failed Requests
{ "expr": "sum(increase(http_server_requests_seconds_count{application=\"$application\", instance=~\"$instance\", uri=~\"$uri\", status!=\"200\"}[$__interval]))", "format": "time_series", "intervalFactor": 1, "refId": "A" }
Req / sec
{ "expr": "sum(irate(http_server_requests_seconds_count{application=\"$application\", instance=~\"$instance\"}[1m]))", "format": "time_series", "interval": "", "intervalFactor": 1, "legendFormat": "", "refId": "A" }
Requests per second
{ "expr": "rate(http_server_requests_seconds_count{application=\"$application\", instance=\"$instance\"}[1m])", "format": "time_series", "intervalFactor": 1, "legendFormat": "{{method}}-{{status}}-{{uri}}", "refId": "A" }
Top 10 Most Used API endpoints
{ "expr": "topk(10, sum by(uri, method) (rate(http_server_requests_seconds_count{application=\"$application\", instance=~\"$instance\"}[1m])))", "format": "time_series", "instant": false, "interval": "", "intervalFactor": 1, "legendFormat": "", "refId": "A" }
Error Rate
{ "expr": "sum(increase(http_server_requests_seconds_count{application=\"$application\", instance=~\"$instance\", uri=~\"$uri\", status!=\"200\"}[$__interval])) / sum(increase(http_server_requests_seconds_count{application=\"$application\", instance=~\"$instance\", uri=~\"$uri\"}[$__interval])) * 100", "format": "time_series", "intervalFactor": 1, "refId": "A" }
Mean response time
{ "expr": "rate(http_server_requests_seconds_sum{application=\"$application\", instance=\"$instance\"}[1m])/rate(http_server_requests_seconds_count{application=\"$application\", instance=\"$instance\"}[1m])", "format": "time_series", "instant": false, "intervalFactor": 1, "legendFormat": "{{method}}-{{status}}-{{uri}}", "refId": "A" }
Response Time
{ "expr": "irate(http_server_requests_seconds_sum{instance=\"$instance\", application=\"$application\", exception=\"None\", uri!~\".*actuator.*\"}[5m]) / irate(http_server_requests_seconds_count{instance=\"$instance\", application=\"$application\", exception=\"None\", uri!~\".*actuator.*\"}[5m])", "format": "time_series", "intervalFactor": 1, "legendFormat": "{{method}} [{{status}}] - {{uri}}", "refId": "A" }
Response time of 50%, 75%, 90%, 95% of requests
{ "expr": "histogram_quantile(0.95, sum(rate(http_server_requests_seconds_bucket{application=\"$application\", instance=\"$instance\"}[1m])) by (le))", "format": "time_series", "instant": false, "interval": "", "intervalFactor": 1, "legendFormat": "95%", "refId": "A" }, { "expr": "histogram_quantile(0.9, sum(rate(http_server_requests_seconds_bucket{application=\"$application\", instance=\"$instance\"}[1m])) by (le))", "format": "time_series", "intervalFactor": 1, "legendFormat": "90%", "refId": "B" }, { "expr": "histogram_quantile(0.75, sum(rate(http_server_requests_seconds_bucket{application=\"$application\", instance=\"$instance\"}[1m])) by (le))", "format": "time_series", "intervalFactor": 1, "legendFormat": "75%", "refId": "C" }, { "expr": "histogram_quantile(0.5, sum(rate(http_server_requests_seconds_bucket{application=\"$application\", instance=\"$instance\"}[1m])) by (le))", "format": "time_series", "intervalFactor": 1, "legendFormat": "50%", "refId": "D" }
小結(jié)
springboot的WebMvcMetricsAutoConfiguration給mvc提供了http.server.requests指標(biāo),類型為timer,當(dāng)輸出到prometheus的時(shí)候,默認(rèn)是沒有開啟Histogram,輸出的是一個(gè)_max的gauge,以及summary類型(_count及_sum)。
以上就是springboot的http.server.requests請(qǐng)求流程源碼解讀的詳細(xì)內(nèi)容,更多關(guān)于springboot http.server.requests請(qǐng)求的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
IDEA 中創(chuàng)建SpringBoot 父子模塊的實(shí)現(xiàn)
這篇文章主要介紹了IDEA 中創(chuàng)建SpringBoot 父子模塊的實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2021-04-04Java 實(shí)戰(zhàn)項(xiàng)目之家居購(gòu)物商城系統(tǒng)詳解流程
讀萬(wàn)卷書不如行萬(wàn)里路,只學(xué)書上的理論是遠(yuǎn)遠(yuǎn)不夠的,只有在實(shí)戰(zhàn)中才能獲得能力的提升,本篇文章手把手帶你用Java實(shí)現(xiàn)一個(gè)家居購(gòu)物商城系統(tǒng),大家可以在過程中查缺補(bǔ)漏,提升水平2021-11-11基于java實(shí)現(xiàn)停車場(chǎng)管理系統(tǒng)
這篇文章主要為大家詳細(xì)介紹了基于java實(shí)現(xiàn)停車場(chǎng)管理系統(tǒng),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2019-11-11SpringBoot + Mybatis-plus實(shí)戰(zhàn)之Mybatis-plus的一級(jí)緩存、二級(jí)緩存
這篇文章主要介紹了SpringBoot + Mybatis-plus實(shí)戰(zhàn)之Mybatis-plus的一級(jí)緩存、二級(jí)緩存,本文通過實(shí)例圖文相結(jié)合給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-12-12Java使用跳轉(zhuǎn)結(jié)構(gòu)實(shí)現(xiàn)隊(duì)列和棧流程詳解
這篇文章主要介紹了Java使用跳轉(zhuǎn)結(jié)構(gòu)實(shí)現(xiàn)隊(duì)列和棧流程,連續(xù)結(jié)構(gòu)和跳轉(zhuǎn)結(jié)構(gòu)是數(shù)據(jù)結(jié)構(gòu)中常見的兩種基本數(shù)據(jù)結(jié)構(gòu),而我們本次的主角棧和隊(duì)列都 既可以使用使用跳轉(zhuǎn)結(jié)構(gòu)實(shí)現(xiàn)也可以使用連續(xù)結(jié)構(gòu)實(shí)現(xiàn)2023-04-04詳解Java線程池如何統(tǒng)計(jì)線程空閑時(shí)間
這篇文章主要和大家分享一個(gè)面試題:Java線程池是怎么統(tǒng)計(jì)線程空閑時(shí)間?文中的示例代碼講解詳細(xì),對(duì)我們掌握J(rèn)ava有一定幫助,需要的可以參考一下2022-11-11