C++實(shí)現(xiàn)獲取指定代碼段的cpu占用
windows
#include <iostream> #include <windows.h> #include <vector> class CodeSegmentCPUMonitor { public: static CodeSegmentCPUMonitor& getInstance() { static CodeSegmentCPUMonitor instance; return instance; } ~CodeSegmentCPUMonitor() { // 獲取結(jié)束性能計(jì)數(shù)器值 QueryPerformanceCounter(&endCounter); // 計(jì)算運(yùn)行時(shí)間(秒) double elapsedTime = static_cast<double>(endCounter.QuadPart - startCounter.QuadPart) / frequency.QuadPart; // 計(jì)算 CPU 平均占用 double averageCPUUsage = (totalCycles / elapsedTime) * 100.0 / processorSpeed; std::cout << "Total Average CPU Usage: " << averageCPUUsage << "%\n"; } void enterCodeSegment() { // 進(jìn)入代碼段時(shí)記錄開始時(shí)間 QueryPerformanceCounter(&codeSegmentStartCounter); } void exitCodeSegment() { // 退出代碼段時(shí)記錄結(jié)束時(shí)間 QueryPerformanceCounter(&codeSegmentEndCounter); // 計(jì)算代碼段的 CPU 占用 ULONGLONG codeSegmentCycles = codeSegmentEndCounter.QuadPart - codeSegmentStartCounter.QuadPart; totalCycles += codeSegmentCycles; } private: LARGE_INTEGER frequency; LARGE_INTEGER startCounter; LARGE_INTEGER endCounter; LARGE_INTEGER codeSegmentStartCounter; LARGE_INTEGER codeSegmentEndCounter; ULONGLONG totalCycles = 0; // 假設(shè)處理器速度為 2.5 GHz,你需要根據(jù)實(shí)際情況調(diào)整這個(gè)值 const double processorSpeed = 2.5e9; CodeSegmentCPUMonitor() { // 獲取性能計(jì)數(shù)器頻率 if (QueryPerformanceFrequency(&frequency)) { // 獲取初始性能計(jì)數(shù)器值 QueryPerformanceCounter(&startCounter); } else { std::cerr << "Failed to get performance counter frequency.\n"; } } // 禁用拷貝構(gòu)造函數(shù)和賦值運(yùn)算符 CodeSegmentCPUMonitor(const CodeSegmentCPUMonitor&) = delete; CodeSegmentCPUMonitor& operator=(const CodeSegmentCPUMonitor&) = delete; }; int main() { // Example: Measure CPU usage for code segment 1 { CodeSegmentCPUMonitor::getInstance().enterCodeSegment(); // Your code segment 1 here CodeSegmentCPUMonitor::getInstance().exitCodeSegment(); } // Example: Measure CPU usage for code segment 2 { CodeSegmentCPUMonitor::getInstance().enterCodeSegment(); // Your code segment 2 here CodeSegmentCPUMonitor::getInstance().exitCodeSegment(); } // ... Add more code segments as needed ... return 0; }
linux
#include <iostream> #include <vector> #include <ctime> class CodeSegmentCPUMonitor { public: static CodeSegmentCPUMonitor& getInstance() { static CodeSegmentCPUMonitor instance; return instance; } ~CodeSegmentCPUMonitor() { // 獲取結(jié)束時(shí)間 struct timespec endTime; clock_gettime(CLOCK_MONOTONIC, &endTime); // 計(jì)算運(yùn)行時(shí)間(秒) double elapsedTime = static_cast<double>(endTime.tv_sec - startTime.tv_sec) + static_cast<double>(endTime.tv_nsec - startTime.tv_nsec) / 1e9; // 計(jì)算 CPU 平均占用 double averageCPUUsage = (totalCycles / elapsedTime) * 100.0 / processorSpeed; std::cout << "Total Average CPU Usage: " << averageCPUUsage << "%\n"; } void enterCodeSegment() { // 進(jìn)入代碼段時(shí)記錄開始時(shí)間 clock_gettime(CLOCK_MONOTONIC, &codeSegmentStartTime); } void exitCodeSegment() { // 退出代碼段時(shí)記錄結(jié)束時(shí)間 struct timespec codeSegmentEndTime; clock_gettime(CLOCK_MONOTONIC, &codeSegmentEndTime); // 計(jì)算代碼段的 CPU 占用 double codeSegmentElapsedTime = static_cast<double>(codeSegmentEndTime.tv_sec - codeSegmentStartTime.tv_sec) + static_cast<double>(codeSegmentEndTime.tv_nsec - codeSegmentStartTime.tv_nsec) / 1e9; totalCycles += codeSegmentElapsedTime; } private: struct timespec startTime; struct timespec codeSegmentStartTime; double totalCycles = 0; // 假設(shè)處理器速度為 2.5 GHz,你需要根據(jù)實(shí)際情況調(diào)整這個(gè)值 const double processorSpeed = 2.5e9; CodeSegmentCPUMonitor() { // 獲取初始時(shí)間 clock_gettime(CLOCK_MONOTONIC, &startTime); } // 禁用拷貝構(gòu)造函數(shù)和賦值運(yùn)算符 CodeSegmentCPUMonitor(const CodeSegmentCPUMonitor&) = delete; CodeSegmentCPUMonitor& operator=(const CodeSegmentCPUMonitor&) = delete; }; int main() { // Example: Measure CPU usage for code segment 1 { CodeSegmentCPUMonitor::getInstance().enterCodeSegment(); // Your code segment 1 here CodeSegmentCPUMonitor::getInstance().exitCodeSegment(); } // Example: Measure CPU usage for code segment 2 { CodeSegmentCPUMonitor::getInstance().enterCodeSegment(); // Your code segment 2 here CodeSegmentCPUMonitor::getInstance().exitCodeSegment(); } // ... Add more code segments as needed ... return 0; }
linux和windows條件編譯
#include <iostream> #ifdef _WIN32 #include <windows.h> #else #include <ctime> #endif class CodeSegmentCPUMonitor { public: static CodeSegmentCPUMonitor& getInstance() { static CodeSegmentCPUMonitor instance; return instance; } ~CodeSegmentCPUMonitor() { #ifdef _WIN32 FILETIME endTime; GetSystemTimeAsFileTime(&endTime); ULARGE_INTEGER endTime64; endTime64.LowPart = endTime.dwLowDateTime; endTime64.HighPart = endTime.dwHighDateTime; double elapsedTime = static_cast<double>(endTime64.QuadPart - startTime.QuadPart) / frequency.QuadPart; #else struct timespec endTime; clock_gettime(CLOCK_MONOTONIC, &endTime); double elapsedTime = static_cast<double>(endTime.tv_sec - startTime.tv_sec) + static_cast<double>(endTime.tv_nsec - startTime.tv_nsec) / 1e9; #endif double averageCPUUsage = (totalCycles / elapsedTime) * 100.0 / processorSpeed; std::cout << "Total Average CPU Usage: " << averageCPUUsage << "%\n"; } void enterCodeSegment() { #ifdef _WIN32 GetSystemTimeAsFileTime(&codeSegmentStartTime); #else clock_gettime(CLOCK_MONOTONIC, &codeSegmentStartTime); #endif } void exitCodeSegment() { #ifdef _WIN32 FILETIME codeSegmentEndTime; GetSystemTimeAsFileTime(&codeSegmentEndTime); ULARGE_INTEGER codeSegmentEndTime64; codeSegmentEndTime64.LowPart = codeSegmentEndTime.dwLowDateTime; codeSegmentEndTime64.HighPart = codeSegmentEndTime.dwHighDateTime; double codeSegmentElapsedTime = static_cast<double>(codeSegmentEndTime64.QuadPart - codeSegmentStartTime.QuadPart) / frequency.QuadPart; #else struct timespec codeSegmentEndTime; clock_gettime(CLOCK_MONOTONIC, &codeSegmentEndTime); double codeSegmentElapsedTime = static_cast<double>(codeSegmentEndTime.tv_sec - codeSegmentStartTime.tv_sec) + static_cast<double>(codeSegmentEndTime.tv_nsec - codeSegmentStartTime.tv_nsec) / 1e9; #endif totalCycles += codeSegmentElapsedTime; } private: #ifdef _WIN32 LARGE_INTEGER frequency; LARGE_INTEGER startTime; FILETIME codeSegmentStartTime; #else struct timespec startTime; struct timespec codeSegmentStartTime; #endif double totalCycles = 0; const double processorSpeed = 2.5e9; CodeSegmentCPUMonitor() { #ifdef _WIN32 QueryPerformanceFrequency(&frequency); QueryPerformanceCounter(&startTime); #else clock_gettime(CLOCK_MONOTONIC, &startTime); #endif } CodeSegmentCPUMonitor(const CodeSegmentCPUMonitor&) = delete; CodeSegmentCPUMonitor& operator=(const CodeSegmentCPUMonitor&) = delete; }; int main() { // Example: Measure CPU usage for code segment 1 { CodeSegmentCPUMonitor::getInstance().enterCodeSegment(); // Your code segment 1 here CodeSegmentCPUMonitor::getInstance().exitCodeSegment(); } // Example: Measure CPU usage for code segment 2 { CodeSegmentCPUMonitor::getInstance().enterCodeSegment(); // Your code segment 2 here CodeSegmentCPUMonitor::getInstance().exitCodeSegment(); } // ... Add more code segments as needed ... return 0; }
解耦log接口的形式1
#include <iostream> #include <string> // CPU Monitor Output Interface class CPUMonitorOutputInterface { public: virtual ~CPUMonitorOutputInterface() {} virtual void log(const std::string& message) = 0; }; // ConsoleLogger: 實(shí)現(xiàn)CPUMonitorOutputInterface的一個(gè)Logger類示例 class ConsoleLogger : public CPUMonitorOutputInterface { public: void log(const std::string& message) override { std::cout << "Logger: " << message << std::endl; } }; class CodeSegmentCPUMonitor { public: CodeSegmentCPUMonitor(CPUMonitorOutputInterface& logger) : logger(logger) { #ifdef _WIN32 QueryPerformanceFrequency(&frequency); QueryPerformanceCounter(&startTime); #else clock_gettime(CLOCK_MONOTONIC, &startTime); #endif } ~CodeSegmentCPUMonitor() { #ifdef _WIN32 FILETIME endTime; GetSystemTimeAsFileTime(&endTime); ULARGE_INTEGER endTime64; endTime64.LowPart = endTime.dwLowDateTime; endTime64.HighPart = endTime.dwHighDateTime; double elapsedTime = static_cast<double>(endTime64.QuadPart - startTime.QuadPart) / frequency.QuadPart; #else struct timespec endTime; clock_gettime(CLOCK_MONOTONIC, &endTime); double elapsedTime = static_cast<double>(endTime.tv_sec - startTime.tv_sec) + static_cast<double>(endTime.tv_nsec - startTime.tv_nsec) / 1e9; #endif double averageCPUUsage = (totalCycles / elapsedTime) * 100.0 / processorSpeed; logger.log("Total Average CPU Usage: " + std::to_string(averageCPUUsage) + "%"); } void enterCodeSegment() { #ifdef _WIN32 GetSystemTimeAsFileTime(&codeSegmentStartTime); #else clock_gettime(CLOCK_MONOTONIC, &codeSegmentStartTime); #endif } void exitCodeSegment() { #ifdef _WIN32 FILETIME codeSegmentEndTime; GetSystemTimeAsFileTime(&codeSegmentEndTime); ULARGE_INTEGER codeSegmentEndTime64; codeSegmentEndTime64.LowPart = codeSegmentEndTime.dwLowDateTime; codeSegmentEndTime64.HighPart = codeSegmentEndTime.dwHighDateTime; double codeSegmentElapsedTime = static_cast<double>(codeSegmentEndTime64.QuadPart - codeSegmentStartTime.QuadPart) / frequency.QuadPart; #else struct timespec codeSegmentEndTime; clock_gettime(CLOCK_MONOTONIC, &codeSegmentEndTime); double codeSegmentElapsedTime = static_cast<double>(codeSegmentEndTime.tv_sec - codeSegmentStartTime.tv_sec) + static_cast<double>(codeSegmentEndTime.tv_nsec - codeSegmentStartTime.tv_nsec) / 1e9; #endif totalCycles += codeSegmentElapsedTime; } private: CPUMonitorOutputInterface& logger; #ifdef _WIN32 LARGE_INTEGER frequency; LARGE_INTEGER startTime; FILETIME codeSegmentStartTime; #else struct timespec startTime; struct timespec codeSegmentStartTime; #endif double totalCycles = 0; const double processorSpeed = 2.5e9; }; int main() { // Example: Measure CPU usage for code segment 1 with ConsoleLogger { ConsoleLogger consoleLogger; CodeSegmentCPUMonitor monitor(consoleLogger); monitor.enterCodeSegment(); // Your code segment 1 here monitor.exitCodeSegment(); } // Example: Measure CPU usage for code segment 2 with ConsoleLogger { ConsoleLogger consoleLogger; CodeSegmentCPUMonitor monitor(consoleLogger); monitor.enterCodeSegment(); // Your code segment 2 here monitor.exitCodeSegment(); } // ... Add more code segments as needed ... return 0; }
到此這篇關(guān)于C++實(shí)現(xiàn)獲取指定代碼段的cpu占用的文章就介紹到這了,更多相關(guān)C++獲取cpu占用內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
C++控制臺(tái)循環(huán)鏈表實(shí)現(xiàn)貪吃蛇
這篇文章主要為大家詳細(xì)介紹了C++控制臺(tái)循環(huán)鏈表實(shí)現(xiàn)貪吃蛇,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2020-04-04C++實(shí)現(xiàn)LeetCode(39.組合之和)
這篇文章主要介紹了C++實(shí)現(xiàn)LeetCode(39.組合之和),本篇文章通過簡(jiǎn)要的案例,講解了該項(xiàng)技術(shù)的了解與使用,以下就是詳細(xì)內(nèi)容,需要的朋友可以參考下2021-07-07教你用Matlab制作立體動(dòng)態(tài)相冊(cè)
沒想到吧,MATLAB竟也能制作3D相冊(cè)!本文將為大家詳細(xì)介紹Matlab制作立體動(dòng)態(tài)相冊(cè)的方法步驟,感興趣的小伙伴可以跟隨小編一起動(dòng)手試一試2022-03-03FFRPC應(yīng)用 Client/Server使用及原理解析
這篇文章主要介紹了FFRPC應(yīng)用 Client/Server使用及原理解析,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-08-08C++實(shí)現(xiàn)線程同步的四種方式總結(jié)
這篇文章主要為大家詳細(xì)介紹了C++實(shí)現(xiàn)線程同步的四種方式,文中的示例代碼講解詳細(xì),對(duì)我們學(xué)習(xí)C++有一定的幫助,需要的可以參考一下2022-11-11C++中的explicit關(guān)鍵字實(shí)例淺析
在C++程序中很少有人去使用explicit關(guān)鍵字,不可否認(rèn),在平時(shí)的實(shí)踐中確實(shí)很少能用的上,再說C++的功能強(qiáng)大,往往一個(gè)問題可以利用好幾種C++特性去解決。接下來給大家介紹 C++中的explicit關(guān)鍵字,需要的朋友可以參考下2017-03-03C++操作MySQL大量數(shù)據(jù)插入效率低下的解決方法
這篇文章主要介紹了C++操作MySQL大量數(shù)據(jù)插入效率低下的解決方法,需要的朋友可以參考下2014-07-07C語言中break與continue的用法和區(qū)別詳解
當(dāng)我們使用while或for循環(huán)時(shí),如果想提前結(jié)束循環(huán)(在不滿足結(jié)束條件的情況下結(jié)束循環(huán)),可以使用break或continue關(guān)鍵字,這篇文章主要給大家介紹了關(guān)于C語言中break與continue的用法和區(qū)別的相關(guān)資料,需要的朋友可以參考下2021-10-10