詳細(xì)講解AsyncTask使用說(shuō)明(值得收藏)
概念
AsyncTask:異步任務(wù),從字面上來(lái)說(shuō),就是在我們的UI主線程運(yùn)行的時(shí)候,異步的完成一些操作。AsyncTask允許我們的執(zhí)行一個(gè)異步的任務(wù)在后臺(tái)。我們可以將耗時(shí)的操作放在異步任務(wù)當(dāng)中來(lái)執(zhí)行,并隨時(shí)將任務(wù)執(zhí)行的結(jié)果返回給我們的UI線程來(lái)更新我們的UI控件。通過(guò)AsyncTask我們可以輕松的解決多線程之間的通信問(wèn)題。
怎么來(lái)理解AsyncTask呢?通俗一點(diǎn)來(lái)說(shuō),AsyncTask就相當(dāng)于Android給我們提供了一個(gè)多線程編程的一個(gè)框架,其介于Thread和Handler之間,我們?nèi)绻x一個(gè)AsyncTask,就需要定義一個(gè)類(lèi)來(lái)繼承AsyncTask這個(gè)抽象類(lèi),并實(shí)現(xiàn)其唯一的一doInBackgroud 抽象方法。
類(lèi)簡(jiǎn)介
AsyncTask = handler + 兩個(gè)線程池的維護(hù)一個(gè)任務(wù)隊(duì)列線程池,一個(gè)執(zhí)行線程池
其中:線程池用于線程調(diào)度、復(fù)用 & 執(zhí)行任務(wù);
Handler用于異步通信
我們來(lái)看看AsyncTask這個(gè)抽象類(lèi)的定義,當(dāng)我們定義一個(gè)類(lèi)來(lái)繼承AsyncTask這個(gè)類(lèi)的時(shí)候,我們需要為其指定3個(gè)泛型參數(shù):
AsyncTask <Params, Progress, Result>
- Params: 這個(gè)泛型指定的是我們傳遞給異步任務(wù)執(zhí)行時(shí)的參數(shù)的類(lèi)型
- Progress: 這個(gè)泛型指定的是我們的異步任務(wù)在執(zhí)行的時(shí)候?qū)?zhí)行的進(jìn)度返回給UI線程的參數(shù)的類(lèi)型
- Result: 這個(gè)泛型指定的異步任務(wù)執(zhí)行完后返回給UI線程的結(jié)果的類(lèi)型
簡(jiǎn)單例子
private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {
//忽略
}
public void onClick(View v) {
try {
URL url = new URL("http://blog.csdn.net/");
new DownloadFilesTask().execute(url);
} catch (MalformedURLException e) {
e.printStackTrace();
}
}執(zhí)行流程
一、在執(zhí)行完 AsyncTask.excute() 后

二、方法分析
常用的AsyncTask繼承的方法有
- onPreExecute():異步任務(wù)開(kāi)啟之前回調(diào),在主線程中執(zhí)行
- doInBackground():執(zhí)行異步任務(wù),在線程池中執(zhí)行
- onProgressUpdate():當(dāng)doInBackground中調(diào)用publishProgress時(shí)回調(diào),在主線程中執(zhí)行
- onPostExecute():在異步任務(wù)執(zhí)行之后回調(diào),在主線程中執(zhí)行
- onCancelled():在異步任務(wù)被取消時(shí)回調(diào)
小demo
效果圖:

Activity
public class AsyThreadActivity extends Activity implements View.OnClickListener {
@BindView(R.id.btn_click)
Button btnClick;
@BindView(R.id.progress)
ProgressBar progress;
@BindView(R.id.btn_chancel)
Button btnChancel;
@BindView(R.id.text)
TextView text;
Mythread myasythread = new Mythread();
@Override
protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_asythread);
ButterKnife.bind(this);
initClcik();
}
private void initClcik() {
btnClick.setOnClickListener(this);
btnChancel.setOnClickListener(this);
myasythread.setOntextchance(new Mythread.Ontextchance() {
@Override
public void textchance(String s) {
text.setText(s);
}
@Override
public void progresschance(Integer number) {
progress.setProgress(number);
}
});
}
@Override
public void onClick(View v) {
switch (v.getId()) {
case R.id.btn_click:
myasythread.execute();
break;
case R.id.btn_chancel:
myasythread.cancel(true);
break;
default:
break;
}
}
}myAsyncTAsk
public class Mythread extends AsyncTask<String,Integer,String> {
private Ontextchance ontextchance;
public Mythread() {
super();
}
@Override
protected String doInBackground(String... params) {
int count = 0;
while(count<99){
count = count + 1;
publishProgress(count);
try {
Thread.sleep(50);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
return null;
}
@Override
protected void onPreExecute() {
ontextchance.textchance("加載中");
super.onPreExecute();
}
@Override
protected void onPostExecute(String s) {
ontextchance.textchance("加載完畢");
super.onPostExecute(s);
}
@Override
protected void onProgressUpdate(Integer... values) {
ontextchance.progresschance(values[0]);
ontextchance.textchance("loading..." + values[0] + "%");
super.onProgressUpdate(values);
}
@Override
protected void onCancelled() {
ontextchance.textchance("已取消");
ontextchance.progresschance(0);
super.onCancelled();
}源碼分析
好吧 ,在想寫(xiě)之前剛剛好瞄到一位小哥哥的文章寫(xiě)得超級(jí)好,然后我就偷懶一把,如下。
源碼分析是基于API24的源碼,我將會(huì)按照下面AsyncTask運(yùn)行的過(guò)程來(lái)分析
一、主分支
首先,execute()方法,開(kāi)啟異步任務(wù)
接著,onPreExecute()方法,異步任務(wù)開(kāi)啟前
接著,doInBackground()方法,異步任務(wù)正在執(zhí)行
最后,onPostExecute()方法,異步任務(wù)完成
二、次分支
onProgressUpdate()方法,異步任務(wù)更新UI
onCancelled()方法,異步任務(wù)取消
主分支部分
代碼開(kāi)始的地方,是在創(chuàng)建AsyncTask類(lèi)之后執(zhí)行的execute()方法
public final AsyncTask<Params, Progress, Result> execute(Params... params) {
return executeOnExecutor(sDefaultExecutor, params);
}execute()方法會(huì)調(diào)用executeOnExecutor()方法
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
Params... params) {
if (mStatus != Status.PENDING) {
switch (mStatus) {
case RUNNING:
throw new IllegalStateException("Cannot execute task:"
+ " the task is already running.");
case FINISHED:
throw new IllegalStateException("Cannot execute task:"
+ " the task has already been executed "
+ "(a task can be executed only once)");
}
}
mStatus = Status.RUNNING;
onPreExecute();
mWorker.mParams = params;
exec.execute(mFuture);
return this;
}AsyncTask定義了一個(gè)mStatus變量,表示異步任務(wù)的運(yùn)行狀態(tài),分別是PENDING、RUNNING、FINISHED,當(dāng)只有PENDING狀態(tài)時(shí),AsyncTask才會(huì)執(zhí)行,這樣也就保證了AsyncTask只會(huì)被執(zhí)行一次
繼續(xù)往下執(zhí)行,mStatus會(huì)被標(biāo)記為RUNNING,接著執(zhí)行,onPreExecute(),將參數(shù)賦值給mWorker,然后還有execute(mFuture)
這里的mWorker和mFuture究竟是什么,我們往下追蹤,來(lái)到AsyncTask的構(gòu)造函數(shù)中,可以找到這兩個(gè)的初始化
public AsyncTask() {
mWorker = new WorkerRunnable<Params, Result>() {
public Result call() throws Exception {
mTaskInvoked.set(true);
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
//noinspection unchecked
Result result = doInBackground(mParams);
Binder.flushPendingCommands();
return postResult(result);
}
};
mFuture = new FutureTask<Result>(mWorker) {
@Override
protected void done() {
try {
postResultIfNotInvoked(get());
} catch (InterruptedException e) {
android.util.Log.w(LOG_TAG, e);
} catch (ExecutionException e) {
throw new RuntimeException("An error occurred while executing doInBackground()",
e.getCause());
} catch (CancellationException e) {
postResultIfNotInvoked(null);
}
}
};
}一、分析mWorker
mWorker是一個(gè)WorkerRunnable對(duì)象,跟蹤WorkerRunnable
private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {
Params[] mParams;
}實(shí)際上,WorkerRunnable是AsyncTask的一個(gè)抽象內(nèi)部類(lèi),實(shí)現(xiàn)了Callable接口
二、分析mFuture
mFuture是一個(gè)FutureTask對(duì)象,跟蹤FutureTask
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}實(shí)際上,F(xiàn)utureTask是java.util.concurrent包下的一個(gè)類(lèi),參數(shù)是個(gè)callable,并且將它賦值給FutureTask類(lèi)中的callable
三、回過(guò)頭來(lái)看
回到我們AsyncTask初始化mFuture,這里的參數(shù)是mWorker也就不奇怪了,因?yàn)閙Worker就是一個(gè)callable,我們?cè)谏厦尜x值給FutureTask類(lèi)中的callable就是這個(gè)mWorker
mFuture = new FutureTask<Result>(mWorker)
而關(guān)于mWorker和mFuture的初始化早在我們Activity中初始化好了,因?yàn)闃?gòu)造函數(shù)是跟AsyncTask類(lèi)的創(chuàng)建而執(zhí)行的
new DownloadFilesTask()
知道了mWorker和mFuture是什么后,我們回到原來(lái)的executeOnExecutor()方法,在這里將mWorker的參數(shù)傳過(guò)去后,就開(kāi)始用線程池execute這個(gè)mFuture
mWorker.mParams = params; exec.execute(mFuture);
一、分析exec
exec是通過(guò)executeOnExecutor()參數(shù)傳進(jìn)來(lái)的
public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
Params... params)也就是我們execute()方法傳過(guò)來(lái)的
public final AsyncTask<Params, Progress, Result> execute(Params... params) {
return executeOnExecutor(sDefaultExecutor, params);
}這里可以看到exec就是這個(gè)sDefaultExecutor
二、分析sDefaultExecutor
我們跟蹤這個(gè)sDefaultExecutor,截取有關(guān)它的代碼
public static final Executor SERIAL_EXECUTOR = new SerialExecutor();
private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
private static class SerialExecutor implements Executor {
final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
Runnable mActive;
public synchronized void execute(final Runnable r) {
mTasks.offer(new Runnable() {
public void run() {
try {
r.run();
} finally {
scheduleNext();
}
}
});
if (mActive == null) {
scheduleNext();
}
}
protected synchronized void scheduleNext() {
if ((mActive = mTasks.poll()) != null) {
THREAD_POOL_EXECUTOR.execute(mActive);
}
}
}從SerialExecutor可以發(fā)現(xiàn),exec.execute(mFuture)就是在調(diào)用SerialExecutor類(lèi)的execute(final Runnable r)方法,這里的參數(shù)r就是mFuture
繼續(xù)往下走,SerialExecutor的execute()方法會(huì)將r封裝成Runnable,并添加到mTasks任務(wù)隊(duì)列中
繼續(xù)往下走,如果這時(shí)候沒(méi)有正在活動(dòng)的AsyncTask任務(wù),那么就會(huì)調(diào)用SerialExecutor的scheduleNext()方法,來(lái)執(zhí)行下一個(gè)AsyncTask任務(wù)
if (mActive == null) {
scheduleNext();
}繼續(xù)往下走,通過(guò)mTasks.poll()取出,將封裝在mTask的Runnable交給mActive,最后真正執(zhí)行的這個(gè)mActive的是THREAD_POOL_EXECUTOR,即執(zhí)行的這個(gè)mActive,也就是包裝在Runnable里面的mFuture
protected synchronized void scheduleNext() {
if ((mActive = mTasks.poll()) != null) {
THREAD_POOL_EXECUTOR.execute(mActive);
}
}mFuture被執(zhí)行了,也就會(huì)執(zhí)行它的run()方法
public void run() {
try {
r.run();
} finally {
scheduleNext();
}
}我們跟蹤到mFuture的run()方法中,切換到FutureTask類(lèi)
public void run() {
if (state != NEW ||
!U.compareAndSwapObject(this, RUNNER, null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}這一段代碼其實(shí)就是將之前在mFutrue創(chuàng)建對(duì)象時(shí)候傳進(jìn)來(lái)的mWorker交給c
Callable<V> c = callable;
然后再調(diào)用c的call()方法,也就是mWorker的call()方法
result = c.call();
代碼又重新的定位到了mWorker類(lèi)的call()方法
mWorker = new WorkerRunnable<Params, Result>() {
public Result call() throws Exception {
mTaskInvoked.set(true);
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
//noinspection unchecked
Result result = doInBackground(mParams);
Binder.flushPendingCommands();
return postResult(result);
}
};可以發(fā)現(xiàn),這里就調(diào)用了我們的doInBackground()方法,最后還返回postResult(),我們跟蹤這個(gè)postResult()方法
private Result postResult(Result result) {
@SuppressWarnings("unchecked")
Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT,
new AsyncTaskResult<Result>(this, result));
message.sendToTarget();
return result;
}觀察代碼,首先是getHandler(),它是一個(gè)單例,返回sHandler
private static Handler getHandler() {
synchronized (AsyncTask.class) {
if (sHandler == null) {
sHandler = new InternalHandler();
}
return sHandler;
}
}也就是說(shuō)postResult方法會(huì)通過(guò)sHandler發(fā)送一個(gè)MESSAGE_POST_RESULT的消息,這個(gè)時(shí)候我們追蹤到sHandler
private static InternalHandler sHandler;
private static class InternalHandler extends Handler {
public InternalHandler() {
super(Looper.getMainLooper());
}
@SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
@Override
public void handleMessage(Message msg) {
AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
switch (msg.what) {
case MESSAGE_POST_RESULT:
// There is only one result
result.mTask.finish(result.mData[0]);
break;
case MESSAGE_POST_PROGRESS:
result.mTask.onProgressUpdate(result.mData);
break;
}
}
}可以發(fā)現(xiàn),sHandler收到MESSAGE_POST_PROGRESS消息后會(huì)調(diào)用result.mTask.finish(result.mData[0]),那么我們還必須知道result是個(gè)什么東西
AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
result是AsyncTask的內(nèi)部類(lèi),實(shí)際上就是個(gè)實(shí)體類(lèi),用來(lái)存儲(chǔ)變量的
private static class AsyncTaskResult<Data> {
final AsyncTask mTask;
final Data[] mData;
AsyncTaskResult(AsyncTask task, Data... data) {
mTask = task;
mData = data;
}
}result.mTask也就是AsyncTask,最后調(diào)用result.mTask.finish(result.mData[0]),即AsyncTask的finish()方法,我們跟蹤到finish()方法
private void finish(Result result) {
if (isCancelled()) {
onCancelled(result);
} else {
onPostExecute(result);
}
mStatus = Status.FINISHED;
}這里判斷AsyncTask是否已經(jīng)取消,如果不取消就執(zhí)行我們的onPostExecute(),最后將狀態(tài)設(shè)置為FINISHED,整一個(gè)AsyncTask的方法都執(zhí)行完了,我們只需要繼承AsyncTask實(shí)現(xiàn)其中的方法就可以按分析的順序往下執(zhí)行了
次分支部分
在AsyncTask中的finish()方法,我們可以看到onCancelled()方法跟onPostExecute()一起的,只要isCancelled()的值為true,就執(zhí)行onCancelled()方法
private void finish(Result result) {
if (isCancelled()) {
onCancelled(result);
} else {
onPostExecute(result);
}
mStatus = Status.FINISHED;
}我們代碼跟蹤isCancelled()方法
public final boolean isCancelled() {
return mCancelled.get();
}發(fā)現(xiàn)是在mCancelled中獲取的,那我們就必須知道這個(gè)mCancelled是什么,代碼跟蹤到mCancelled
private final AtomicBoolean mCancelled = new AtomicBoolean();
mCancelled實(shí)際上就是個(gè)Boolean對(duì)象,那我們搜索它是在哪個(gè)時(shí)候設(shè)置的
public final boolean cancel(boolean mayInterruptIfRunning) {
mCancelled.set(true);
return mFuture.cancel(mayInterruptIfRunning);
}可以發(fā)現(xiàn),只要我們?cè)贏syncTask類(lèi)中調(diào)用這個(gè)方法即可停止異步任務(wù)
而onProgressUpdate()方法,是在sHandler中執(zhí)行,sHandler收到MESSAGE_POST_PROGRESS消息后,執(zhí)行,我們搜索MESSAGE_POST_PROGRESS在什么時(shí)候發(fā)送的
private static class InternalHandler extends Handler {
public InternalHandler() {
super(Looper.getMainLooper());
}
@SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
@Override
public void handleMessage(Message msg) {
AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
switch (msg.what) {
case MESSAGE_POST_RESULT:
// There is only one result
result.mTask.finish(result.mData[0]);
break;
case MESSAGE_POST_PROGRESS:
result.mTask.onProgressUpdate(result.mData);
break;
}
}
}可以發(fā)現(xiàn),只要我們?cè)贏syncTask類(lèi)中調(diào)用publishProgress()方法即可執(zhí)行onProgressUpdate()方法
protected final void publishProgress(Progress... values) {
if (!isCancelled()) {
getHandler().obtainMessage(MESSAGE_POST_PROGRESS,
new AsyncTaskResult<Progress>(this, values)).sendToTarget();
}
}源碼原文:https://blog.csdn.net/qq_30379689/article/details/53203556
說(shuō)實(shí)話上面源碼分析寫(xiě)得真好,我在看了上面的源碼感覺(jué)少了一丟丟東西,自己在額外的補(bǔ)充一點(diǎn)東西
補(bǔ)充:THREAD_POOL_EXECUTOR
/**
* 源碼分析:THREAD_POOL_EXECUTOR.execute()
* 說(shuō)明:
* a. THREAD_POOL_EXECUTOR實(shí)際上是1個(gè)已配置好的可執(zhí)行并行任務(wù)的線程池
* b. 調(diào)用THREAD_POOL_EXECUTOR.execute()實(shí)際上是調(diào)用線程池的execute()去執(zhí)行具體耗時(shí)任務(wù)
* c. 而該耗時(shí)任務(wù)則是步驟2中初始化WorkerRunnable實(shí)例對(duì)象時(shí)復(fù)寫(xiě)的call()
* 注:下面先看任務(wù)執(zhí)行線程池的線程配置過(guò)程,看完后請(qǐng)回到步驟2中的源碼分析call()
*/
// 步驟1:參數(shù)設(shè)置
//獲得當(dāng)前CPU的核心數(shù)
private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
//設(shè)置線程池的核心線程數(shù)2-4之間,但是取決于CPU核數(shù)
private static final int CORE_POOL_SIZE = Math.max(2, Math.min(CPU_COUNT - 1, 4));
//設(shè)置線程池的最大線程數(shù)為 CPU核數(shù)*2+1
private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
//設(shè)置線程池空閑線程存活時(shí)間30s
private static final int KEEP_ALIVE_SECONDS = 30;
//初始化線程工廠
private static final ThreadFactory sThreadFactory = new ThreadFactory() {
private final AtomicInteger mCount = new AtomicInteger(1);
public Thread newThread(Runnable r) {
return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
}
};
//初始化存儲(chǔ)任務(wù)的隊(duì)列為L(zhǎng)inkedBlockingQueue 最大容量為128
private static final BlockingQueue<Runnable> sPoolWorkQueue =
new LinkedBlockingQueue<Runnable>(128);
// 步驟2: 根據(jù)參數(shù)配置執(zhí)行任務(wù)線程池,即 THREAD_POOL_EXECUTOR
public static final Executor THREAD_POOL_EXECUTOR;
static {
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_SECONDS, TimeUnit.SECONDS,
sPoolWorkQueue, sThreadFactory);
// 設(shè)置核心線程池的 超時(shí)時(shí)間也為30s
threadPoolExecutor.allowCoreThreadTimeOut(true);
THREAD_POOL_EXECUTOR = threadPoolExecutor;
}還有就是 我們可以通過(guò)源碼可以知道 使用AsyncTask執(zhí)行的后臺(tái)線程只有一個(gè),這個(gè)結(jié)局看起來(lái)很悲傷。我們?cè)詾閳?zhí)行如下。
但是現(xiàn)實(shí)是這樣子的
被串行設(shè)置了 如下 synchronized
private static class SerialExecutor implements Executor {
// SerialExecutor = 靜態(tài)內(nèi)部類(lèi)
// 即 是所有實(shí)例化的AsyncTask對(duì)象公有的
// SerialExecutor 內(nèi)部維持了1個(gè)雙向隊(duì)列;
// 容量根據(jù)元素?cái)?shù)量調(diào)節(jié)
final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
Runnable mActive;
// execute()被同步鎖synchronized修飾
// 即說(shuō)明:通過(guò)鎖使得該隊(duì)列保證AsyncTask中的任務(wù)是串行執(zhí)行的
// 即 多個(gè)任務(wù)需1個(gè)個(gè)加到該隊(duì)列中;然后 執(zhí)行完隊(duì)列頭部的再執(zhí)行下一個(gè),以此類(lèi)推
public synchronized void execute(final Runnable r) {
// 將實(shí)例化后的FutureTask類(lèi) 的實(shí)例對(duì)象傳入
// 即相當(dāng)于:向隊(duì)列中加入一個(gè)新的任務(wù)
mTasks.offer(new Runnable() {
public void run() {
try {
r.run();
} finally {
scheduleNext();->>分析3
}
}
});
// 若當(dāng)前無(wú)任務(wù)執(zhí)行,則去隊(duì)列中取出1個(gè)執(zhí)行
if (mActive == null) {
scheduleNext();
}
}
// 分析3
protected synchronized void scheduleNext() {
// 1. 取出隊(duì)列頭部任務(wù)
if ((mActive = mTasks.poll()) != null) {
// 2. 執(zhí)行取出的隊(duì)列頭部任務(wù)
// 即 調(diào)用執(zhí)行任務(wù)線程池類(lèi)(THREAD_POOL_EXECUTOR)->>繼續(xù)往下看
THREAD_POOL_EXECUTOR.execute(mActive);
}
}
}好吧,我到現(xiàn)在還是沒(méi)有明白為什么他要如此限制,等哪位小哥哥,知道這個(gè)為什么的時(shí)候告訴我一聲,拜托拜托
如果我們還是想并行執(zhí)行,參考如下
方法一,繞過(guò) excute 方法避免SerialExecutor 對(duì)象
方法二,繞過(guò) excute 方法避免被轉(zhuǎn)換為 自定義線程池
方法三,在excute 方法將默認(rèn)對(duì)象換為我們的 自定義線程池對(duì)象
//自定義線程池
private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
private static final int CORE_POOL_SIZE = Math.max(2, Math.min(CPU_COUNT - 1, 4));
private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
private static final int KEEP_ALIVE_SECONDS = 60;
public static final Executor MY_THREAD_POOL_EXECUTOR;
private static final ThreadFactory sThreadFactory = new ThreadFactory() {
private final AtomicInteger mCount = new AtomicInteger(1);
@Override
public Thread newThread(Runnable r) {
return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
}
};
private static final BlockingQueue<Runnable> sPoolWorkQueue =
new LinkedBlockingQueue<Runnable>(128);
static {
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_SECONDS, TimeUnit.SECONDS,
sPoolWorkQueue, sThreadFactory);
threadPoolExecutor.allowCoreThreadTimeOut(true);
MY_THREAD_POOL_EXECUTOR = threadPoolExecutor;
} case R.id.btAsyncTaskSerial://串行執(zhí)行
new MyAsyncTask(mActivity, "Task#1 ").execute("123");
new MyAsyncTask(mActivity, "Task#2 ").execute("123");
new MyAsyncTask(mActivity, "Task#3 ").execute("123");
break;
case R.id.btAsyncTaskParallel://并行執(zhí)行 -- 這里使用 AsyncTask 自帶的線程池
new MyAsyncTask(mActivity, "Task#1 ").executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, "123");
new MyAsyncTask(mActivity, "Task#2 ").executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, "123");
new MyAsyncTask(mActivity, "Task#3 ").executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, "123");
break;
case R.id.btAsyncTaskParallelByUs://并行執(zhí)行 -- 自定義線程池
new MyAsyncTask(mActivity, "Task#1 ").executeOnExecutor(MY_THREAD_POOL_EXECUTOR, "123");
new MyAsyncTask(mActivity, "Task#2 ").executeOnExecutor(MY_THREAD_POOL_EXECUTOR, "123");
new MyAsyncTask(mActivity, "Task#3 ").executeOnExecutor(MY_THREAD_POOL_EXECUTOR, "123");
break;
case R.id.btAsyncTaskParallelByUs2://并行執(zhí)行 -- 自定義線程池 另外一種方式
MyAsyncTask.setDefaultExecutor(MY_THREAD_POOL_EXECUTOR);//替換掉默認(rèn)的 AsyncTask.SERIAL_EXECUTOR
new MyAsyncTask(mActivity, "Task#a ").execute("abc");
new MyAsyncTask(mActivity, "Task#b ").execute("abc");
new MyAsyncTask(mActivity, "Task#c ").execute("abc");
break;重要的事再次強(qiáng)調(diào)我到現(xiàn)在還是沒(méi)有明白為什么他要如此限制,等哪位小哥哥,知道這個(gè)為什么的時(shí)候告訴我一聲,拜托拜托
Thanks
到此這篇關(guān)于詳細(xì)講解AsyncTask使用說(shuō)明(值得收藏)的文章就介紹到這了,更多相關(guān)AsyncTask使用內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
RecyclerView實(shí)現(xiàn)水波紋點(diǎn)擊效果
這篇文章主要為大家詳細(xì)介紹了RecyclerView實(shí)現(xiàn)水波紋點(diǎn)擊效果,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2019-01-01
Android開(kāi)發(fā)之軟鍵盤(pán)用法實(shí)例分析
這篇文章主要介紹了Android開(kāi)發(fā)之軟鍵盤(pán)用法,實(shí)例分析了Android軟鍵盤(pán)的實(shí)現(xiàn)技巧,需要的朋友可以參考下2015-05-05
解決Android Studio一直停留在MyApplication:syncing的問(wèn)題
這篇文章主要介紹了Android Studio一直停留在MyApplication:syncing的完美解決方案,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-10-10
詳解Android如何實(shí)現(xiàn)自定義的動(dòng)畫(huà)曲線
最近在寫(xiě)動(dòng)畫(huà)相關(guān)的篇章,經(jīng)常會(huì)用到 Curve 這個(gè)動(dòng)畫(huà)曲線類(lèi),那這個(gè)類(lèi)到底怎么實(shí)現(xiàn)的?如果想自己來(lái)一個(gè)自定義的動(dòng)畫(huà)曲線該怎么弄?本文將為大家詳細(xì)解答2022-04-04
基于Android實(shí)現(xiàn)保存圖片到本地并可以在相冊(cè)中顯示出來(lái)
App應(yīng)用越來(lái)越人性化,不僅界面優(yōu)美而且服務(wù)也很多樣化,操作也非常方便。通過(guò)本篇文章給大家介紹基于Android實(shí)現(xiàn)保存圖片到本地并可以在相冊(cè)中顯示出來(lái),對(duì)android保存圖片相關(guān)知識(shí)感興趣的朋友一起學(xué)習(xí)吧2015-12-12

