C++實(shí)現(xiàn)旋轉(zhuǎn)掃描儀的示例代碼
旋轉(zhuǎn)掃描儀(Rotating Scanner),也稱為旋轉(zhuǎn)掃描儀或圓形掃描儀,是一種用于獲取圖像和文檔的設(shè)備。與傳統(tǒng)的平板掃描儀不同,旋轉(zhuǎn)掃描儀通過旋轉(zhuǎn)掃描頭或整個(gè)裝置來進(jìn)行掃描。這種掃描方式可以快速且精確地捕捉整個(gè)文檔或圖像。
旋轉(zhuǎn)掃描儀通常由以下幾個(gè)主要部件組成:
1、掃描頭:負(fù)責(zé)對(duì)文檔或圖像進(jìn)行光學(xué)掃描。掃描頭通常包括光學(xué)傳感器和鏡頭系統(tǒng)。
2、旋轉(zhuǎn)機(jī)構(gòu):將掃描頭安裝在一個(gè)能夠旋轉(zhuǎn)的平臺(tái)或軸上,使其能夠沿著文檔或圖像的圓周方向進(jìn)行掃描。
3、控制系統(tǒng):用于控制掃描頭的運(yùn)動(dòng)和采集圖像的參數(shù)設(shè)置。包括電路、傳感器和軟件。
使用旋轉(zhuǎn)掃描儀可以快速地獲取大型文檔或圖像的全貌,如地圖、藍(lán)圖、報(bào)紙等。它們廣泛應(yīng)用于建筑、工程、制造、檔案管理、藝術(shù)品保護(hù)和數(shù)字化等領(lǐng)域,提高了掃描效率和準(zhǔn)確性。
示例一:
/** * @file * @author [Krishna Vedala](https://github.com/kvedala) * @brief Implementation of * [Spirograph](https://en.wikipedia.org/wiki/Spirograph) * * @details * Implementation of the program is based on the geometry shown in the figure * below: * * <a * rel="external nofollow" ><img * src="https://upload.wikimedia.org/wikipedia/commons/3/39/Resonance_Cascade.svg" * alt="Spirograph geometry from Wikipedia" style="width: 250px"/></a> */ #ifdef USE_GLUT #ifdef __APPLE__ #include <GLUT/glut.h> // include path on Macs is different #else #include <GL/glut.h> #endif // __APPLE__ #endif #define _USE_MATH_DEFINES /**< required for MSVC compiler */ #include <array> #include <cmath> #include <cstdlib> #include <ctime> #include <fstream> #include <iomanip> #include <iostream> #include <sstream> #ifdef _OPENMP #include <omp.h> #endif /** * @namespace spirograph Functions related to spirograph.cpp */ namespace spirograph { /** Generate spirograph curve into arrays `x` and `y` such that the i^th point * in 2D is represented by `(x[i],y[i])`. The generating function is given by: * \f{eqnarray*}{ * x &=& R\left[ (1-k) \cos (t) + l\cdot k\cdot\cos \left(\frac{1-k}{k}t\right) * \right]\\ * y &=& R\left[ (1-k) \sin (t) - l\cdot k\cdot\sin \left(\frac{1-k}{k}t\right) * \right] \f} * where * * \f$R\f$ is the scaling parameter that we will consider \f$=1\f$ * * \f$l=\frac{\rho}{r}\f$ is the relative distance of marker from the centre * of inner circle and \f$0\le l\le1\f$ * * \f$\rho\f$ is physical distance of marker from centre of inner circle * * \f$r\f$ is the radius of inner circle * * \f$k=\frac{r}{R}\f$ is the ratio of radius of inner circle to outer circle * and \f$0<k<1\f$ * * \f$R\f$ is the radius of outer circle * * \f$t\f$ is the angle of rotation of the point i.e., represents the time * parameter * * Since we are considering ratios, the actual values of \f$r\f$ and * \f$R\f$ are immaterial. * * @tparam N number of points = size of array * @param [out] points Array of 2D points represented as std::pair * @param l the relative distance of marker from the centre of * inner circle and \f$0\le l\le1\f$ * @param k the ratio of radius of inner circle to outer circle and \f$0<k<1\f$ * @param rot the number of rotations to perform (can be fractional value) */ template <std::size_t N> void spirograph(std::array<std::pair<double, double>, N> *points, double l, double k, double rot) { double dt = rot * 2.f * M_PI / N; double R = 1.f; const double k1 = 1.f - k; int32_t step = 0; #ifdef _OPENMP #pragma omp for #endif for (step = 0; step < N; step++) { double t = dt * step; double first = R * (k1 * std::cos(t) + l * k * std::cos(k1 * t / k)); double second = R * (k1 * std::sin(t) - l * k * std::sin(k1 * t / k)); points[0][step].first = first; points[0][step].second = second; } } /** * @brief Test function to save resulting points to a CSV file. * */ void test() { const size_t N = 500; double l = 0.3, k = 0.75, rot = 10.; std::stringstream fname; fname << std::setw(3) << "spirograph_" << l << "_" << k << "_" << rot << ".csv"; std::ofstream fp(fname.str()); if (!fp.is_open()) { perror(fname.str().c_str()); exit(EXIT_FAILURE); } std::array<std::pair<double, double>, N> points; spirograph(&points, l, k, rot); for (size_t i = 0; i < N; i++) { fp << points[i].first << "," << points[i].first; if (i < N - 1) { fp << '\n'; } } fp.close(); } #ifdef USE_GLUT static bool paused = 0; /**< flag to set pause/unpause animation */ static const int animation_speed = 25; /**< animation delate in ms */ static const double step = 0.01; /**< animation step size */ static double l_ratio = step * 10; /**< the l-ratio defined in docs */ static double k_ratio = step; /**< the k-ratio defined in docs */ static const double num_rot = 20.; /**< number of rotations to simulate */ /** A wrapper that is not available in all GLUT implementations. */ static inline void glutBitmapString(void *font, char *message) { for (char *ch = message; *ch != '\0'; ch++) glutBitmapCharacter(font, *ch); } /** * @brief Function to graph (x,y) points on the OpenGL graphics window. * * @tparam N number of points = size of array * @param [in] points Array of 2D points represented as std::pair * @param l the relative distance of marker from the centre of * inner circle and \f$0\le l\le1\f$ to display info * @param k the ratio of radius of inner circle to outer circle and \f$0<k<1\f$ * to display info */ template <size_t N> void display_graph(const std::array<std::pair<double, double>, N> &points, double l, double k) { glClearColor(1.0f, 1.0f, 1.0f, 0.0f); // Set background color to white and opaque glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background) glBegin(GL_LINES); // draw line segments glColor3f(0.f, 0.f, 1.f); // blue glPointSize(2.f); // point size in pixels for (size_t i = 1; i < N; i++) { glVertex2f(points[i - 1].first, points[i - 1].second); // line from glVertex2f(points[i].first, points[i].second); // line to } glEnd(); glColor3f(0.f, 0.f, 0.f); std::stringstream buffer; buffer << std::setw(3) << "l = " << l; glRasterPos2f(-.85, .85); glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24, const_cast<char *>(buffer.str().c_str())); buffer.str(""); buffer.clear(); buffer << std::setw(3) << "k = " << k; glRasterPos2f(-.85, .70); glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24, const_cast<char *>(buffer.str().c_str())); glutSwapBuffers(); } /** * @brief Test function with animation * */ void test2() { const size_t N = 5000; // number of samples static bool direction1 = true; // increment if true, otherwise decrement static bool direction2 = true; // increment if true, otherwise decrement std::array<std::pair<double, double>, N> points; spirograph(&points, l_ratio, k_ratio, num_rot); display_graph(points, l_ratio, k_ratio); if (paused) // if paused, do not update l_ratio and k_ratio return; if (direction1) { // increment k_ratio if (k_ratio >= (1.f - step)) // maximum limit direction1 = false; // reverse direction of k_ratio else k_ratio += step; } else { // decrement k_ratio if (k_ratio <= step) { // minimum limit direction1 = true; // reverse direction of k_ratio if (direction2) { // increment l_ratio if (l_ratio >= (1.f - step)) // max limit of l_ratio direction2 = false; // reverse direction of l_ratio else l_ratio += step; } else { // decrement l_ratio if (l_ratio <= step) // minimum limit of l_ratio direction2 = true; // reverse direction of l_ratio else l_ratio -= step; } } else { // no min limit of k_ratio k_ratio -= step; } } } /** * @brief GLUT timer callback function to add animation delay. */ void timer_cb(int t) { glutTimerFunc(animation_speed, timer_cb, 0); glutPostRedisplay(); } /** * @brief Keypress event call back function. * * @param key ID of the key pressed * @param x mouse pointer position at event * @param y mouse pointer position at event */ void keyboard_cb(unsigned char key, int x, int y) { switch (key) { case ' ': // spacebar toggles pause paused = !paused; // toggle break; case GLUT_KEY_UP: case '+': // up arrow key k_ratio += step; break; case GLUT_KEY_DOWN: case '_': // down arrow key k_ratio -= step; break; case GLUT_KEY_RIGHT: case '=': // left arrow key l_ratio += step; break; case GLUT_KEY_LEFT: case '-': // right arrow key l_ratio -= step; break; case 0x1B: // escape key exits exit(EXIT_SUCCESS); default: return; } } #endif } // namespace spirograph /** Main function */ int main(int argc, char **argv) { spirograph::test(); #ifdef USE_GLUT glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE); glutCreateWindow("Spirograph"); glutInitWindowSize(400, 400); // glutIdleFunc(glutPostRedisplay); glutTimerFunc(spirograph::animation_speed, spirograph::timer_cb, 0); glutKeyboardFunc(spirograph::keyboard_cb); glutDisplayFunc(spirograph::test2); glutMainLoop(); #endif return 0; }
示例二:
請(qǐng)注意旋轉(zhuǎn)掃描儀的具體實(shí)現(xiàn)取決于您選擇設(shè)備和供應(yīng)商特定的API。以下是一個(gè)簡(jiǎn)單示例,演示了如何使用C++與旋轉(zhuǎn)掃描儀進(jìn)行通信。
#include <iostream> // 模擬掃描儀類 class Scanner { public: // 初始化掃描儀 bool initialize() { // 連接掃描儀設(shè)備 // 調(diào)用底層API代碼 std::cout << "Scanner initialization complete." << std::endl; return true; } // 掃描文檔 bool scan() { // 執(zhí)行掃描操作 // 調(diào)用底層API代碼 std::cout << "Scanning document..." << std::endl; // 模擬掃描完成后的圖像處理 std::cout << "Document scanned successfully." << std::endl; return true; } }; int main() { // 創(chuàng)建掃描儀對(duì)象 Scanner scanner; // 初始化掃描儀 if (!scanner.initialize()) { std::cout << "Failed to initialize scanner." << std::endl; return 1; } // 掃描文檔 if (!scanner.scan()) { std::cout << "Failed to scan document." << std::endl; return 1; } return 0; }
在上面的示例代碼中,我們使用了一個(gè)簡(jiǎn)單的Scanner類來模擬掃描儀的行為。在主函數(shù)中,我們創(chuàng)建了一個(gè)Scanner對(duì)象,然后調(diào)用其initialize()方法進(jìn)行初始化,接著調(diào)用scan()方法進(jìn)行文檔掃描。
注意,這僅僅只是一個(gè)簡(jiǎn)單的示例,用于演示與旋轉(zhuǎn)掃描儀的通信。實(shí)際的實(shí)現(xiàn)可能會(huì)涉及更多的API調(diào)用和圖像處理步驟,具體取決于掃描儀供應(yīng)商和其所使用的API。您需要根據(jù)具體設(shè)備和API文檔進(jìn)行適當(dāng)?shù)恼{(diào)整。
以上就是C++實(shí)現(xiàn)旋轉(zhuǎn)掃描儀的示例代碼的詳細(xì)內(nèi)容,更多關(guān)于C++旋轉(zhuǎn)掃描儀的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
C++開發(fā)之PugiXML庫(kù)基礎(chǔ)用法示例詳解
PugiXML庫(kù)是一個(gè)功能強(qiáng)大、簡(jiǎn)單易用的C++ XML解析庫(kù),它提供了一組方便的函數(shù)來解析、創(chuàng)建和修改XML文檔,本文介紹了如何使用PugiXML庫(kù)來解析、創(chuàng)建和修改XML文檔,以及如何處理錯(cuò)誤和異常,感興趣的朋友跟隨小編一起看看吧2024-03-03Qt數(shù)據(jù)庫(kù)應(yīng)用之實(shí)現(xiàn)數(shù)據(jù)圖文混排
除了能夠打印基本的文字信息數(shù)據(jù)到pdf和紙張,越來越多的應(yīng)用需求還要求能夠?qū)С鰣D片,并且要支持圖文混排。本文將通過Qt實(shí)現(xiàn)這一功能,需要的可以參考一下2022-01-01C語言進(jìn)階輸入輸出重定向與fopen函數(shù)使用示例詳解
這篇文章主要為大家介紹了C語言進(jìn)階輸入輸出重定向與fopen函數(shù)的示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2022-02-02使用C/C++調(diào)用libcurl調(diào)試消息的方式
在使用 C/C++ 調(diào)用 libcurl 進(jìn)行 HTTP 請(qǐng)求時(shí),有時(shí)我們需要查看請(qǐng)求的/應(yīng)答消息的內(nèi)容(包括請(qǐng)求頭和請(qǐng)求體)以方便調(diào)試,libcurl 提供了多種方法來捕獲和輸出這些信息,本文介紹具體的使用方式,需要的朋友可以參考下2025-02-02VC實(shí)現(xiàn)動(dòng)態(tài)菜單的創(chuàng)建方法
這篇文章主要介紹了VC實(shí)現(xiàn)動(dòng)態(tài)菜單的創(chuàng)建方法,需要的朋友可以參考下2014-07-07