SpringBoot使用OpenCV的超詳細(xì)步驟
Spring boot 整合 OpenCV 4.5
本文展示W(wǎng)indows下Spring Boot 整合Opencv 4.5 進(jìn)行對圖片中的人臉提取,開發(fā)工具IDEA。
環(huán)境安裝
1、下載opencv安裝包【下載地址】 或者點擊這里下載最新版

2、下載后運行exe、安裝。

配置spring boot項目
1、創(chuàng)建空白spring boot項目,jar放入如下圖,pom添加依賴。

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>OpenCVStudy</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>pom</packaging>
<name>OpenCVStudy</name>
<description>項目骨架</description>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.6.RELEASE</version>
<relativePath/>
</parent>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<java.version>1.8</java.version>
<spring-cloud.version>Finchley.SR1</spring-cloud.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<!--openCV 依賴包-->
<dependency>
<groupId>org.opencv</groupId>
<artifactId>opencv</artifactId>
<version>4.5.1</version>
<scope>system</scope>
<systemPath>${project.basedir}/src/main/resources/lib/opencv-451.jar</systemPath>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>gfs-maven-snapshot-repository</id>
<name>gfs-maven-snapshot-repository</name>
<url>https://raw.githubusercontent.com/gefangshuai/maven/master/</url>
</repository>
</repositories>
</project>
2、opencv\build\java目錄的dll,opencv\sources\data\haarcascades數(shù)據(jù)集,按圖存放。

3、測試代碼
創(chuàng)建類 StreamUtils.java
import javax.imageio.ImageIO;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
import java.io.ByteArrayInputStream;
import java.io.IOException;
public class StreamUtils {
/**
* 裝換回編碼
*
* @param correctMat
* @return
*/
public static String catToBase64(Mat correctMat) {
return bufferToBase64(toByteArray(correctMat));
}
/**
* 轉(zhuǎn)換成base64編碼
*
* @param buffer
* @return
*/
public static String bufferToBase64(byte[] buffer) {
return Base64Utils.encodeToString(buffer);
}
/**
* base64編碼轉(zhuǎn)換成字節(jié)數(shù)組
*
* @param base64Str
* @return
*/
public static byte[] base64ToByteArray(String base64Str) {
return Base64Utils.decodeFromString(base64Str);
}
/**
* base64 編碼轉(zhuǎn)換為 BufferedImage
*
* @param base64
* @return
*/
public static BufferedImage base64ToBufferedImage(String base64) {
BASE64Decoder Base64 = new BASE64Decoder();
try {
byte[] bytes1 = Base64.decodeBuffer(base64);
ByteArrayInputStream bais = new ByteArrayInputStream(bytes1);
return ImageIO.read(bais);
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
/**
* mat轉(zhuǎn)換成bufferedImage
*
* @param matrix
* @return
*/
public static byte[] toByteArray(Mat matrix) {
MatOfByte mob = new MatOfByte();
Imgcodecs.imencode(".jpg", matrix, mob);
return mob.toArray();
}
/**
* mat轉(zhuǎn)換成bufferedImage
*
* @param matrix
* @return
*/
public static BufferedImage toBufferedImage(Mat matrix) throws IOException {
byte[] buffer = toByteArray(matrix);
ByteArrayInputStream bais = new ByteArrayInputStream(buffer);
return ImageIO.read(bais);
}
/**
* base64轉(zhuǎn)Mat
*
* @param base64
* @return
* @throws IOException
*/
public static Mat base642Mat(String base64) {
return bufImg2Mat(base64ToBufferedImage(base64), BufferedImage.TYPE_3BYTE_BGR, CvType.CV_8UC3);
}
/**
* BufferedImage轉(zhuǎn)換成Mat
*
* @param original 要轉(zhuǎn)換的BufferedImage
* @param imgType bufferedImage的類型 如 BufferedImage.TYPE_3BYTE_BGR
* @param matType 轉(zhuǎn)換成mat的type 如 CvType.CV_8UC3
*/
public static Mat bufImg2Mat(BufferedImage original, int imgType, int matType) {
if (original == null) {
throw new IllegalArgumentException("original == null");
}
// Don't convert if it already has correct type
if (original.getType() != imgType) {
// Create a buffered image
BufferedImage image = new BufferedImage(original.getWidth(), original.getHeight(), imgType);
// Draw the image onto the new buffer
Graphics2D g = image.createGraphics();
try {
g.setComposite(AlphaComposite.Src);
g.drawImage(original, 0, 0, null);
original = image;
} catch (Exception e) {
e.printStackTrace();
} finally {
g.dispose();
}
}
byte[] pixels = ((DataBufferByte) original.getRaster().getDataBuffer()).getData();
Mat mat = Mat.eye(original.getHeight(), original.getWidth(), matType);
mat.put(0, 0, pixels);
return mat;
}
}
測試代碼
public static String markFace(String base64Images) {
String path = System.getProperty("user.dir").concat("/haarcascades/haarcascade_frontalface_alt.xml");
CascadeClassifier faceDetector = new CascadeClassifier(path);
MatOfRect faceDetections = new MatOfRect();
Mat mat = StreamUtils.base642Mat(base64Images);
faceDetector.detectMultiScale(mat, faceDetections);
if (faceDetections.toArray().length > 0) {
for (Rect rect : faceDetections.toList()) {
Imgproc.rectangle(mat, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0), 3);
}
}
return StreamUtils.catToBase64(mat);
}
public static void main(String[] args) {
String base64Img = "";
String base64Back = markFace(base64Img);
}OpenCV 訓(xùn)練自己的模型,實現(xiàn)特定物體的識別
opencv 3.4版本才能有訓(xùn)練器文件,4.5版本去掉了;但是訓(xùn)練出的數(shù)據(jù)集能通用。本人喜歡用新版,前面介紹使用的是高版本,訓(xùn)練自己的模型必須用3.4.X版本的。
環(huán)境安裝
1、下載opencv安裝包【下載地址】

2、下載后選擇目錄安裝,提取文件到本地,檢查是否存在目錄。

前期準(zhǔn)備
1、正樣本數(shù)據(jù)圖片5張(image\positive\img);創(chuàng)建文件info.dat(image\positive)并編輯如下內(nèi)容。

img/1.jpg 1 0 0 55 55 img/2.jpg 1 0 0 55 55 img/3.jpg 1 0 0 55 55 img/4.jpg 1 0 0 55 55 img/5.jpg 1 0 0 55 55
2、負(fù)樣本數(shù)據(jù)圖片5張(image\negitive\img);創(chuàng)建bg.txt文件并編輯如下內(nèi)容。

D:\tools\OpenCV\xl\image\negitive\img\1.jpg D:\tools\OpenCV\xl\image\negitive\img\2.jpg D:\tools\OpenCV\xl\image\negitive\img\3.jpg D:\tools\OpenCV\xl\image\negitive\img\4.jpg D:\tools\OpenCV\xl\image\negitive\img\5.jpg
3、cmd執(zhí)行,生成sample.vec文件;
> D:\tools\OpenCV\opencv3.4\opencv\build\x64\vc15\bin\opencv_createsamples.exe -info D:\tools\OpenCV\xl\image\positive\info.dat -vec D:\tools\OpenCV\xl\image\sample.vec -num 5 -bgcolor 0 -bgthresh 0 -w 24 -h 24
4、生成的sample.vec和bg.txt拷貝到opencv_traincascade.exe同級目錄(opencv有這個bug,不能指定目錄,不然會產(chǎn)生報錯),cmd執(zhí)行;
注意:numPos 不能為正樣本數(shù)量,只能小于實際數(shù)量。numNeg為負(fù)樣本數(shù)量,可以大于實際數(shù)量
D:\tools\OpenCV\opencv3.4\opencv\build\x64\vc15\bin\opencv_traincascade.exe -data D:\tools\OpenCV\xl\image -vec sample.vec -bg bg.txt -numPos 3 -numNeg 7 -numStages 12 -feattureType HAAR -w 24 -h 24 -minHitRate 0.995 -maxFalseAlarmRate 0.5
執(zhí)行結(jié)果:
PARAMETERS: cascadeDirName: D:\tools\OpenCV\xl\image vecFileName: sample.vec bgFileName: bg.txt numPos: 4 numNeg: 7 numStages: 12 precalcValBufSize[Mb] : 1024 precalcIdxBufSize[Mb] : 1024 acceptanceRatioBreakValue : -1 stageType: BOOST featureType: HAAR sampleWidth: 24 sampleHeight: 24 boostType: GAB minHitRate: 0.995 maxFalseAlarmRate: 0.5 weightTrimRate: 0.95 maxDepth: 1 maxWeakCount: 100 mode: BASIC Number of unique features given windowSize [24,24] : 162336 ===== TRAINING 0-stage ===== <BEGIN POS count : consumed 4 : 4 NEG count : acceptanceRatio 7 : 1 Precalculation time: 0.008 +----+---------+---------+ | N | HR | FA | +----+---------+---------+ | 1| 1| 0| +----+---------+---------+ END> Training until now has taken 0 days 0 hours 0 minutes 0 seconds. ===== TRAINING 1-stage ===== <BEGIN POS count : consumed 4 : 4 NEG count : acceptanceRatio 7 : 0.875 Precalculation time: 0.008 +----+---------+---------+ | N | HR | FA | +----+---------+---------+ | 1| 1| 0| +----+---------+---------+ END> Training until now has taken 0 days 0 hours 0 minutes 0 seconds. ===== TRAINING 2-stage ===== <BEGIN POS count : consumed 4 : 4 NEG count : acceptanceRatio 7 : 0.636364 Precalculation time: 0.008 +----+---------+---------+ | N | HR | FA | +----+---------+---------+ | 1| 1| 0| +----+---------+---------+ END> Training until now has taken 0 days 0 hours 0 minutes 0 seconds. ===== TRAINING 3-stage ===== <BEGIN POS count : consumed 4 : 4 NEG count : acceptanceRatio 7 : 0.01983 Precalculation time: 0.008 +----+---------+---------+ | N | HR | FA | +----+---------+---------+ | 1| 1| 0| +----+---------+---------+ END> Training until now has taken 0 days 0 hours 0 minutes 0 seconds. ===== TRAINING 4-stage ===== <BEGIN POS count : consumed 4 : 4 NEG count : acceptanceRatio 7 : 0.00266565 Precalculation time: 0.007 +----+---------+---------+ | N | HR | FA | +----+---------+---------+ | 1| 1| 0| +----+---------+---------+ END> Training until now has taken 0 days 0 hours 0 minutes 0 seconds. ===== TRAINING 5-stage ===== <BEGIN POS count : consumed 4 : 4 NEG count : acceptanceRatio 0 : 0 Required leaf false alarm rate achieved. Branch training terminated.
5、執(zhí)行完生成 cascade.xml

6、創(chuàng)建測試代碼使用,可行。
public static String cascade(String base64Images) {
String path = System.getProperty("user.dir").concat("/haarcascades/cascade.xml");
CascadeClassifier faceDetector = new CascadeClassifier(path);
MatOfRect faceDetections = new MatOfRect();
Mat mat = StreamUtils.base642Mat(base64Images);
faceDetector.detectMultiScale(mat, faceDetections);
if (faceDetections.toArray().length > 0) {
for (Rect rect : faceDetections.toList()) {
Imgproc.rectangle(mat, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0), 3);
}
}
return StreamUtils.catToBase64(mat);
}
public static void main(String[] args) {
String base64Img = "";
String base64Back = cascade(base64Img);
}
總結(jié)
本文只是學(xué)習(xí)如何訓(xùn)練自己模型,選用正本和反面數(shù)據(jù)較小,實際項目中需要選用大量得樣本數(shù)據(jù)圖片。
到此這篇關(guān)于SpringBoot使用OpenCV的文章就介紹到這了,更多相關(guān)SpringBoot使用OpenCV內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
詳解spring開發(fā)_JDBC操作MySQL數(shù)據(jù)庫
本篇文章主要介紹了spring開發(fā)_JDBC操作MySQL數(shù)據(jù)庫,具有一定的參考價值,有興趣的可以了解一下。2016-12-12
Java獲取調(diào)用當(dāng)前方法的類名或方法名(棧堆信息)的四種方式舉例
在Java編程中我們經(jīng)常需要在運行時獲取當(dāng)前執(zhí)行的方法名稱,這在日志記錄、性能監(jiān)控、調(diào)試等方面非常有用,這篇文章主要給大家介紹了關(guān)于Java獲取調(diào)用當(dāng)前方法的類名或方法名(棧堆信息)的四種方式,需要的朋友可以參考下2024-09-09
springboot2.2.2集成dubbo的實現(xiàn)方法
這篇文章主要介紹了springboot2.2.2集成dubbo的實現(xiàn)方法,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-01-01

