在linux服務(wù)器本地部署Deepseek及在mac遠(yuǎn)程web-ui訪問的操作
1. 在Linux服務(wù)器上部署DeepSeek模型
要在 Linux 上通過 Ollama 安裝和使用模型,您可以按照以下步驟進(jìn)行操作:
步驟 1:安裝 Ollama
安裝 Ollama:
使用以下命令安裝 Ollama:
curl -sSfL https://ollama.com/install.sh | sh
驗證安裝:
安裝完成后,您可以通過以下命令驗證 Ollama 是否安裝成功:
ollama --version
步驟 2:下載模型
ollama run deepseek-r1:32b
這將下載并啟動DeepSeek R1 32B模型。
DeepSeek R1 蒸餾模型列表
模型名稱 | 參數(shù)量 | 基礎(chǔ)架構(gòu) | 適用場景 |
---|---|---|---|
DeepSeek-R1-Distill-Qwen-1.5B | 1.5B | Qwen2.5 | 適合移動設(shè)備或資源受限的終端 |
DeepSeek-R1-Distill-Qwen-7B | 7B | Qwen2.5 | 適合普通文本生成工具 |
DeepSeek-R1-Distill-Llama-8B | 8B | Llama3.1 | 適合小型企業(yè)日常文本處理 |
DeepSeek-R1-Distill-Qwen-14B | 14B | Qwen2.5 | 適合桌面級應(yīng)用 |
DeepSeek-R1-Distill-Qwen-32B | 32B | Qwen2.5 | 適合專業(yè)領(lǐng)域知識問答系統(tǒng) |
DeepSeek-R1-Distill-Llama-70B | 70B | Llama3.3 | 適合科研、學(xué)術(shù)研究等高要求場景 |
RTX 4090 顯卡顯存為 24GB,32B 模型在 4-bit 量化下約需 22GB 顯存,適合該硬件。32B 模型在推理基準(zhǔn)測試中表現(xiàn)優(yōu)異,接近 70B 模型的推理能力,但對硬件資源需求更低。
步驟 3:運(yùn)行模型
ollama run deepseek-r1:32b
通過上面的步驟,已經(jīng)可以直接在 Linux服務(wù)器通過命令行的形式使用Deepseek了。但是不夠友好,下面介紹更方便的形式。
2. 在linux服務(wù)器配置Ollama服務(wù)
1. 設(shè)置Ollama服務(wù)配置
設(shè)置OLLAMA_HOST=0.0.0.0環(huán)境變量,這使得Ollama服務(wù)能夠監(jiān)聽所有網(wǎng)絡(luò)接口,從而允許遠(yuǎn)程訪問。
sudo vi /etc/systemd/system/ollama.service
[Unit] Description=Ollama Service After=network-online.target [Service] ExecStart=/usr/local/bin/ollama serve User=ollama Group=ollama Restart=always RestartSec=3 Environment="OLLAMA_HOST=0.0.0.0" Environment="PATH=/usr/local/cuda/bin:/home/bytedance/miniconda3/bin:/home/bytedance/miniconda3/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin" [Install] WantedBy=default.target
2. 重新加載并重啟Ollama服務(wù)
sudo systemctl daemon-reload sudo systemctl restart ollama
3.驗證Ollama服務(wù)是否正常運(yùn)行
運(yùn)行以下命令,確保Ollama服務(wù)正在監(jiān)聽所有網(wǎng)絡(luò)接口:
sudo netstat -tulpn | grep ollama
您應(yīng)該看到類似以下的輸出,表明Ollama服務(wù)正在監(jiān)聽所有網(wǎng)絡(luò)接口(0.0.0.0):
tcp 0 0 0.0.0.0:11434 0.0.0.0:* LISTEN - ollama
4. 配置防火墻以允許遠(yuǎn)程訪問
為了確保您的Linux服務(wù)器允許從外部訪問Ollama服務(wù),您需要配置防火墻以允許通過端口11434的流量。
sudo ufw allow 11434/tcp sudo ufw reload
5. 驗證防火墻規(guī)則
確保防火墻規(guī)則已正確添加,并且端口11434已開放。您可以使用以下命令檢查防火墻狀態(tài):
sudo ufw status
狀態(tài): 激活 至 動作 來自 - -- -- 22/tcp ALLOW Anywhere 11434/tcp ALLOW Anywhere 22/tcp (v6) ALLOW Anywhere (v6) 11434/tcp (v6) ALLOW Anywhere (v6)
6. 測試遠(yuǎn)程訪問
在完成上述配置后,您可以通過遠(yuǎn)程設(shè)備(如Mac)測試對Ollama服務(wù)的訪問。
在遠(yuǎn)程設(shè)備上測試連接:
在Mac上打開終端,運(yùn)行以下命令以測試對Ollama服務(wù)的連接:
curl http://10.37.96.186:11434/api/version
顯示
{"version":"0.5.7"}
測試問答
curl -X POST http://10.37.96.186:11434/api/generate \ -H "Content-Type: application/json" \ -d '{"model": "deepseek-r1:32b", "prompt": "你是誰?"}'
顯示
{"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.118616168Z","response":"\u003cthink\u003e","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.150938966Z","response":"\n\n","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.175255854Z","response":"\u003c/think\u003e","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.199509353Z","response":"\n\n","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.223657359Z","response":"您好","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.24788375Z","response":"!","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.272068174Z","response":"我是","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.296163417Z","response":"由","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.320515728Z","response":"中國的","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.344646528Z","response":"深度","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.36880216Z","response":"求","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.393006489Z","response":"索","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.417115966Z","response":"(","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.441321254Z","response":"Deep","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.465439117Z","response":"Seek","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.489619415Z","response":")","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.51381827Z","response":"公司","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.538012781Z","response":"開發(fā)","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.562186246Z","response":"的","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.586331325Z","response":"智能","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.610539651Z","response":"助手","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.634769989Z","response":"Deep","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.659134003Z","response":"Seek","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.683523205Z","response":"-R","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.70761762Z","response":"1","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.731953604Z","response":"。","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.756135462Z","response":"如","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.783480232Z","response":"您","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.807766337Z","response":"有任何","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.831964079Z","response":"任何","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.856229156Z","response":"問題","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.880487159Z","response":",","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.904710537Z","response":"我會","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.929026993Z","response":"盡","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.953239249Z","response":"我","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:15.977496819Z","response":"所能","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:16.001763128Z","response":"為您提供","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:16.026068523Z","response":"幫助","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:16.050242581Z","response":"。","done":false} {"model":"deepseek-r1:32b","created_at":"2025-02-06T00:47:16.074454593Z","response":"","done":true,"done_reason":"stop","context":[151644,105043,100165,30,151645,151648,271,151649,198,198,111308,6313,104198,67071,105538,102217,30918,50984,9909,33464,39350,7552,73218,100013,9370,100168,110498,33464,39350,12,49,16,1773,29524,87026,110117,99885,86119,3837,105351,99739,35946,111079,113445,100364,1773],"total_duration":3872978599,"load_duration":2811407308,"prompt_eval_count":6,"prompt_eval_duration":102000000,"eval_count":40,"eval_duration":958000000}
通過上述步驟,已經(jīng)成功在Linux服務(wù)器上配置了Ollama服務(wù),并通過Mac遠(yuǎn)程訪問了DeepSeek模型。接下來,將介紹如何在Mac上安裝Web UI,以便更方便地與模型進(jìn)行交互。
3. 在Mac上安裝Web UI
為了更方便地與遠(yuǎn)程Linux服務(wù)器上的DeepSeek模型進(jìn)行交互,可以在Mac上安裝一個Web UI工具。這里我們推薦使用 Open Web UI,它是一個基于Web的界面,支持多種AI模型,包括Ollama。
1. 通過conda安裝open-webui
打開終端,運(yùn)行以下命令創(chuàng)建一個新的conda環(huán)境,并指定Python版本為3.11:
conda create -n open-webui-env python=3.11 conda activate open-webui-env pip install open-webui
2. 啟動open-webui
open-webui serve
3. 瀏覽器訪問
http://localhost:8080/
使用管理員身份(第一個注冊用戶)登錄
在Open webui界面中,依次點(diǎn)擊“展開左側(cè)欄”(左上角三道杠)–>“頭像”(左下角)–>管理員面板–>設(shè)置(上側(cè))–>外部連接
在外部連接的Ollama API一欄將switch開關(guān)打開,在欄中填上http://10.37.96.186:11434(這是我的服務(wù)器地址)
點(diǎn)擊右下角“保存”按鈕
點(diǎn)擊“新對話”(左上角),確定是否正確刷出模型列表,如果正確刷出,則設(shè)置完畢。
4. 愉快的使用本地deepseek模型
到此這篇關(guān)于在linux服務(wù)器本地部署Deepseek及在mac遠(yuǎn)程web-ui訪問的操作的文章就介紹到這了,更多相關(guān)linux 本地部署Deepseek內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
- 如何在本地部署DeepSeek大模型實現(xiàn)聯(lián)網(wǎng)增強(qiáng)的AI應(yīng)用
- deepseek本地部署使用步驟詳解
- 一文教你如何本地部署DeepSeek
- DeepSeek本地部署流程詳細(xì)指南
- Nodejs本地部署DeepSeek的教程詳解
- deepseek本地部署流程(解決服務(wù)器繁忙以及隱私等問題)
- Linux 服務(wù)器本地部署 DeepSeek-R1 大模型并在遠(yuǎn)端Web-UI訪問保姆級教程
- 0基礎(chǔ)租個硬件玩deepseek,藍(lán)耘元生代智算云|本地部署DeepSeek?R1模型的操作流程
- MAC快速本地部署Deepseek的實現(xiàn)步驟
相關(guān)文章
淺談vscode中task.json和launch.json的關(guān)系
本文主要介紹了淺談vscode中task.json和launch.json的關(guān)系,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2023-08-08教你免費(fèi)做一個屬于自己穩(wěn)定有效的圖床-PicGo
由于現(xiàn)在很多寫作平臺都支持了Markdown語法,導(dǎo)致圖床用的人越來越多。這篇文章主要介紹了如何免費(fèi)做一個屬于自己穩(wěn)定有效的圖床-PicGo,需要的朋友可以參考下2020-01-01Crystal最新發(fā)布v1.3.0語法相似Ruby編譯型編程語言
Crystal?是一種通用的、面向?qū)ο蟮木幊陶Z言,由?Ary?Borenszweig、Juan?Wajnerman、Brian?Cardiff?和?300?多名貢獻(xiàn)者設(shè)計開發(fā)2022-01-01