VGG作為流行的幾個模型之一,訓練圖形數據效果不錯,在mnist數據集是常用的入門集數據,VGG層數非常多,如果嚴格按照規(guī)范來實現,并用來訓練mnist數據集,會出現各種問題,如,經過16層卷積后,28*28*1的圖片幾乎無法進行。先介紹下VGGILSVRC 2014的第二名是Karen Simonyan和 Andrew Zisserman實現的卷積神經網絡,現在稱其為...
https://discuss.pytorch.org/t/how-to-modify-the-final-fc-layer-based-on-the-torch-model/766/12 That's because vgg19 doesn't have a fc member variable. Instead, it has a 1 2 3 4 5 6 7 8 9 (classifier): Sequential ( (0): Dropout (p=0.5) (1): Linear (25088->4096) (2):...