Scrapy-redis爬蟲分布式爬取的分析和實現(xiàn)
Scrapy
Scrapy是一個比較好用的Python爬蟲框架,你只需要編寫幾個組件就可以實現(xiàn)網頁數(shù)據(jù)的爬取。但是當我們要爬取的頁面非常多的時候,單個主機的處理能力就不能滿足我們的需求了(無論是處理速度還是網絡請求的并發(fā)數(shù)),這時候分布式爬蟲的優(yōu)勢就顯現(xiàn)出來。
而Scrapy-Redis則是一個基于Redis的Scrapy分布式組件。它利用Redis對用于爬取的請求(Requests)進行存儲和調度(Schedule),并對爬取產生的項目(items)存儲以供后續(xù)處理使用。scrapy-redi重寫了scrapy一些比較關鍵的代碼,將scrapy變成一個可以在多個主機上同時運行的分布式爬蟲。
原生的Scrapy的架構是這樣子的:

加上了Scrapy-Redis之后的架構變成了:

scrapy-redis的官方文檔寫的比較簡潔,沒有提及其運行原理,所以如果想全面的理解分布式爬蟲的運行原理,還是得看scrapy-redis的源代碼才行,不過scrapy-redis的源代碼很少,也比較好懂,很快就能看完。
scrapy-redis工程的主體還是是redis和scrapy兩個庫,工程本身實現(xiàn)的東西不是很多,這個工程就像膠水一樣,把這兩個插件粘結了起來。
scrapy-redis提供了哪些組件?
scrapy-redis所實現(xiàn)的兩種分布式:爬蟲分布式以及item處理分布式。分別是由模塊scheduler和模塊pipelines實現(xiàn)。
connection.py
負責根據(jù)setting中配置實例化redis連接。被dupefilter和scheduler調用,總之涉及到redis存取的都要使用到這個模塊。
import redis
import six
from scrapy.utils.misc import load_object
DEFAULT_REDIS_CLS = redis.StrictRedis
# Sane connection defaults.
DEFAULT_PARAMS = {
'socket_timeout': 30,
'socket_connect_timeout': 30,
'retry_on_timeout': True,
}
# Shortcut maps 'setting name' -> 'parmater name'.
SETTINGS_PARAMS_MAP = {
'REDIS_URL': 'url',
'REDIS_HOST': 'host',
'REDIS_PORT': 'port',
}
def get_redis_from_settings(settings):
"""Returns a redis client instance from given Scrapy settings object.
This function uses ``get_client`` to instantiate the client and uses
``DEFAULT_PARAMS`` global as defaults values for the parameters. You can
override them using the ``REDIS_PARAMS`` setting.
Parameters
----------
settings : Settings
A scrapy settings object. See the supported settings below.
Returns
-------
server
Redis client instance.
Other Parameters
----------------
REDIS_URL : str, optional
Server connection URL.
REDIS_HOST : str, optional
Server host.
REDIS_PORT : str, optional
Server port.
REDIS_PARAMS : dict, optional
Additional client parameters.
"""
params = DEFAULT_PARAMS.copy()
params.update(settings.getdict('REDIS_PARAMS'))
# XXX: Deprecate REDIS_* settings.
for source, dest in SETTINGS_PARAMS_MAP.items():
val = settings.get(source)
if val:
params[dest] = val
# Allow ``redis_cls`` to be a path to a class.
if isinstance(params.get('redis_cls'), six.string_types):
params['redis_cls'] = load_object(params['redis_cls'])
return get_redis(**params)
# Backwards compatible alias.
from_settings = get_redis_from_settings
def get_redis(**kwargs):
"""Returns a redis client instance.
Parameters
----------
redis_cls : class, optional
Defaults to ``redis.StrictRedis``.
url : str, optional
If given, ``redis_cls.from_url`` is used to instantiate the class.
**kwargs
Extra parameters to be passed to the ``redis_cls`` class.
Returns
-------
server
Redis client instance.
"""
redis_cls = kwargs.pop('redis_cls', DEFAULT_REDIS_CLS)
url = kwargs.pop('url', None)
if url:
return redis_cls.from_url(url, **kwargs)
else:
return redis_cls(**kwargs)
connect文件引入了redis模塊,這個是redis-python庫的接口,用于通過python訪問redis數(shù)據(jù)庫,可見,這個文件主要是實現(xiàn)連接redis數(shù)據(jù)庫的功能(返回的是redis庫的Redis對象或者StrictRedis對象,這倆都是可以直接用來進行數(shù)據(jù)操作的對象)。這些連接接口在其他文件中經常被用到。其中,我們可以看到,要想連接到redis數(shù)據(jù)庫,和其他數(shù)據(jù)庫差不多,需要一個ip地址、端口號、用戶名密碼(可選)和一個整形的數(shù)據(jù)庫編號,同時我們還可以在scrapy工程的setting文件中配置套接字的超時時間、等待時間等。
dupefilter.py
負責執(zhí)行requst的去重,實現(xiàn)的很有技巧性,使用redis的set數(shù)據(jù)結構。但是注意scheduler并不使用其中用于在這個模塊中實現(xiàn)的dupefilter鍵做request的調度,而是使用queue.py模塊中實現(xiàn)的queue。當request不重復時,將其存入到queue中,調度時將其彈出。
import logging
import time
from scrapy.dupefilters import BaseDupeFilter
from scrapy.utils.request import request_fingerprint
from .connection import get_redis_from_settings
DEFAULT_DUPEFILTER_KEY = "dupefilter:%(timestamp)s"
logger = logging.getLogger(__name__)
# TODO: Rename class to RedisDupeFilter.
class RFPDupeFilter(BaseDupeFilter):
"""Redis-based request duplicates filter.
This class can also be used with default Scrapy's scheduler.
"""
logger = logger
def __init__(self, server, key, debug=False):
"""Initialize the duplicates filter.
Parameters
----------
server : redis.StrictRedis
The redis server instance.
key : str
Redis key Where to store fingerprints.
debug : bool, optional
Whether to log filtered requests.
"""
self.server = server
self.key = key
self.debug = debug
self.logdupes = True
@classmethod
def from_settings(cls, settings):
"""Returns an instance from given settings.
This uses by default the key ``dupefilter:<timestamp>``. When using the
``scrapy_redis.scheduler.Scheduler`` class, this method is not used as
it needs to pass the spider name in the key.
Parameters
----------
settings : scrapy.settings.Settings
Returns
-------
RFPDupeFilter
A RFPDupeFilter instance.
"""
server = get_redis_from_settings(settings)
# XXX: This creates one-time key. needed to support to use this
# class as standalone dupefilter with scrapy's default scheduler
# if scrapy passes spider on open() method this wouldn't be needed
# TODO: Use SCRAPY_JOB env as default and fallback to timestamp.
key = DEFAULT_DUPEFILTER_KEY % {'timestamp': int(time.time())}
debug = settings.getbool('DUPEFILTER_DEBUG')
return cls(server, key=key, debug=debug)
@classmethod
def from_crawler(cls, crawler):
"""Returns instance from crawler.
Parameters
----------
crawler : scrapy.crawler.Crawler
Returns
-------
RFPDupeFilter
Instance of RFPDupeFilter.
"""
return cls.from_settings(crawler.settings)
def request_seen(self, request):
"""Returns True if request was already seen.
Parameters
----------
request : scrapy.http.Request
Returns
-------
bool
"""
fp = self.request_fingerprint(request)
# This returns the number of values added, zero if already exists.
added = self.server.sadd(self.key, fp)
return added == 0
def request_fingerprint(self, request):
"""Returns a fingerprint for a given request.
Parameters
----------
request : scrapy.http.Request
Returns
-------
str
"""
return request_fingerprint(request)
def close(self, reason=''):
"""Delete data on close. Called by Scrapy's scheduler.
Parameters
----------
reason : str, optional
"""
self.clear()
def clear(self):
"""Clears fingerprints data."""
self.server.delete(self.key)
def log(self, request, spider):
"""Logs given request.
Parameters
----------
request : scrapy.http.Request
spider : scrapy.spiders.Spider
"""
if self.debug:
msg = "Filtered duplicate request: %(request)s"
self.logger.debug(msg, {'request': request}, extra={'spider': spider})
elif self.logdupes:
msg = ("Filtered duplicate request %(request)s"
" - no more duplicates will be shown"
" (see DUPEFILTER_DEBUG to show all duplicates)")
msg = "Filtered duplicate request: %(request)s"
self.logger.debug(msg, {'request': request}, extra={'spider': spider})
self.logdupes = False
這個文件看起來比較復雜,重寫了scrapy本身已經實現(xiàn)的request判重功能。因為本身scrapy單機跑的話,只需要讀取內存中的request隊列或者持久化的request隊列(scrapy默認的持久化似乎是json格式的文件,不是數(shù)據(jù)庫)就能判斷這次要發(fā)出的request url是否已經請求過或者正在調度(本地讀就行了)。而分布式跑的話,就需要各個主機上的scheduler都連接同一個數(shù)據(jù)庫的同一個request池來判斷這次的請求是否是重復的了。
在這個文件中,通過繼承BaseDupeFilter重寫他的方法,實現(xiàn)了基于redis的判重。根據(jù)源代碼來看,scrapy-redis使用了scrapy本身的一個fingerprint接request_fingerprint,這個接口很有趣,根據(jù)scrapy文檔所說,他通過hash來判斷兩個url是否相同(相同的url會生成相同的hash結果),但是當兩個url的地址相同,get型參數(shù)相同但是順序不同時,也會生成相同的hash結果(這個真的比較神奇。。。)所以scrapy-redis依舊使用url的fingerprint來判斷request請求是否已經出現(xiàn)過。這個類通過連接redis,使用一個key來向redis的一個set中插入fingerprint(這個key對于同一種spider是相同的,redis是一個key-value的數(shù)據(jù)庫,如果key是相同的,訪問到的值就是相同的,這里使用spider名字+DupeFilter的key就是為了在不同主機上的不同爬蟲實例,只要屬于同一種spider,就會訪問到同一個set,而這個set就是他們的url判重池),如果返回值為0,說明該set中該fingerprint已經存在(因為集合是沒有重復值的),則返回False,如果返回值為1,說明添加了一個fingerprint到set中,則說明這個request沒有重復,于是返回True,還順便把新fingerprint加入到數(shù)據(jù)庫中了。 DupeFilter判重會在scheduler類中用到,每一個request在進入調度之前都要進行判重,如果重復就不需要參加調度,直接舍棄就好了,不然就是白白浪費資源。
queue.py
其作用如dupefilter.py所述,但是這里實現(xiàn)了三種方式的queue:FIFO的SpiderQueue,SpiderPriorityQueue,以及LIFI的SpiderStack。默認使用的是第二種,這也就是出現(xiàn)之前文章中所分析情況的原因(鏈接)。
from scrapy.utils.reqser import request_to_dict, request_from_dict
from . import picklecompat
class Base(object):
"""Per-spider queue/stack base class"""
def __init__(self, server, spider, key, serializer=None):
"""Initialize per-spider redis queue.
Parameters:
server -- redis connection
spider -- spider instance
key -- key for this queue (e.g. "%(spider)s:queue")
"""
if serializer is None:
# Backward compatibility.
# TODO: deprecate pickle.
serializer = picklecompat
if not hasattr(serializer, 'loads'):
raise TypeError("serializer does not implement 'loads' function: %r"
% serializer)
if not hasattr(serializer, 'dumps'):
raise TypeError("serializer '%s' does not implement 'dumps' function: %r"
% serializer)
self.server = server
self.spider = spider
self.key = key % {'spider': spider.name}
self.serializer = serializer
def _encode_request(self, request):
"""Encode a request object"""
obj = request_to_dict(request, self.spider)
return self.serializer.dumps(obj)
def _decode_request(self, encoded_request):
"""Decode an request previously encoded"""
obj = self.serializer.loads(encoded_request)
return request_from_dict(obj, self.spider)
def __len__(self):
"""Return the length of the queue"""
raise NotImplementedError
def push(self, request):
"""Push a request"""
raise NotImplementedError
def pop(self, timeout=0):
"""Pop a request"""
raise NotImplementedError
def clear(self):
"""Clear queue/stack"""
self.server.delete(self.key)
class SpiderQueue(Base):
"""Per-spider FIFO queue"""
def __len__(self):
"""Return the length of the queue"""
return self.server.llen(self.key)
def push(self, request):
"""Push a request"""
self.server.lpush(self.key, self._encode_request(request))
def pop(self, timeout=0):
"""Pop a request"""
if timeout > 0:
data = self.server.brpop(self.key, timeout)
if isinstance(data, tuple):
data = data[1]
else:
data = self.server.rpop(self.key)
if data:
return self._decode_request(data)
class SpiderPriorityQueue(Base):
"""Per-spider priority queue abstraction using redis' sorted set"""
def __len__(self):
"""Return the length of the queue"""
return self.server.zcard(self.key)
def push(self, request):
"""Push a request"""
data = self._encode_request(request)
score = -request.priority
# We don't use zadd method as the order of arguments change depending on
# whether the class is Redis or StrictRedis, and the option of using
# kwargs only accepts strings, not bytes.
self.server.execute_command('ZADD', self.key, score, data)
def pop(self, timeout=0):
"""
Pop a request
timeout not support in this queue class
"""
# use atomic range/remove using multi/exec
pipe = self.server.pipeline()
pipe.multi()
pipe.zrange(self.key, 0, 0).zremrangebyrank(self.key, 0, 0)
results, count = pipe.execute()
if results:
return self._decode_request(results[0])
class SpiderStack(Base):
"""Per-spider stack"""
def __len__(self):
"""Return the length of the stack"""
return self.server.llen(self.key)
def push(self, request):
"""Push a request"""
self.server.lpush(self.key, self._encode_request(request))
def pop(self, timeout=0):
"""Pop a request"""
if timeout > 0:
data = self.server.blpop(self.key, timeout)
if isinstance(data, tuple):
data = data[1]
else:
data = self.server.lpop(self.key)
if data:
return self._decode_request(data)
__all__ = ['SpiderQueue', 'SpiderPriorityQueue', 'SpiderStack']
該文件實現(xiàn)了幾個容器類,可以看這些容器和redis交互頻繁,同時使用了我們上邊picklecompat中定義的serializer。這個文件實現(xiàn)的幾個容器大體相同,只不過一個是隊列,一個是棧,一個是優(yōu)先級隊列,這三個容器到時候會被scheduler對象實例化,來實現(xiàn)request的調度。比如我們使用SpiderQueue最為調度隊列的類型,到時候request的調度方法就是先進先出,而實用SpiderStack就是先進后出了。
我們可以仔細看看SpiderQueue的實現(xiàn),他的push函數(shù)就和其他容器的一樣,只不過push進去的request請求先被scrapy的接口request_to_dict變成了一個dict對象(因為request對象實在是比較復雜,有方法有屬性不好串行化),之后使用picklecompat中的serializer串行化為字符串,然后使用一個特定的key存入redis中(該key在同一種spider中是相同的)。而調用pop時,其實就是從redis用那個特定的key去讀其值(一個list),從list中讀取最早進去的那個,于是就先進先出了。
這些容器類都會作為scheduler調度request的容器,scheduler在每個主機上都會實例化一個,并且和spider一一對應,所以分布式運行時會有一個spider的多個實例和一個scheduler的多個實例存在于不同的主機上,但是,因為scheduler都是用相同的容器,而這些容器都連接同一個redis服務器,又都使用spider名加queue來作為key讀寫數(shù)據(jù),所以不同主機上的不同爬蟲實例公用一個request調度池,實現(xiàn)了分布式爬蟲之間的統(tǒng)一調度。
picklecompat.py
"""A pickle wrapper module with protocol=-1 by default.""" try: import cPickle as pickle # PY2 except ImportError: import pickle def loads(s): return pickle.loads(s) def dumps(obj): return pickle.dumps(obj, protocol=-1)
這里實現(xiàn)了loads和dumps兩個函數(shù),其實就是實現(xiàn)了一個serializer,因為redis數(shù)據(jù)庫不能存儲復雜對象(value部分只能是字符串,字符串列表,字符串集合和hash,key部分只能是字符串),所以我們存啥都要先串行化成文本才行。這里使用的就是python的pickle模塊,一個兼容py2和py3的串行化工具。這個serializer主要用于一會的scheduler存reuqest對象,至于為什么不實用json格式,我也不是很懂,item pipeline的串行化默認用的就是json。
pipelines.py
這是是用來實現(xiàn)分布式處理的作用。它將Item存儲在redis中以實現(xiàn)分布式處理。另外可以發(fā)現(xiàn),同樣是編寫pipelines,在這里的編碼實現(xiàn)不同于文章中所分析的情況,由于在這里需要讀取配置,所以就用到了from_crawler()函數(shù)。
from scrapy.utils.misc import load_object
from scrapy.utils.serialize import ScrapyJSONEncoder
from twisted.internet.threads import deferToThread
from . import connection
default_serialize = ScrapyJSONEncoder().encode
class RedisPipeline(object):
"""Pushes serialized item into a redis list/queue"""
def __init__(self, server,
key='%(spider)s:items',
serialize_func=default_serialize):
self.server = server
self.key = key
self.serialize = serialize_func
@classmethod
def from_settings(cls, settings):
params = {
'server': connection.from_settings(settings),
}
if settings.get('REDIS_ITEMS_KEY'):
params['key'] = settings['REDIS_ITEMS_KEY']
if settings.get('REDIS_ITEMS_SERIALIZER'):
params['serialize_func'] = load_object(
settings['REDIS_ITEMS_SERIALIZER']
)
return cls(**params)
@classmethod
def from_crawler(cls, crawler):
return cls.from_settings(crawler.settings)
def process_item(self, item, spider):
return deferToThread(self._process_item, item, spider)
def _process_item(self, item, spider):
key = self.item_key(item, spider)
data = self.serialize(item)
self.server.rpush(key, data)
return item
def item_key(self, item, spider):
"""Returns redis key based on given spider.
Override this function to use a different key depending on the item
and/or spider.
"""
return self.key % {'spider': spider.name}
pipeline文件實現(xiàn)了一個item pipieline類,和scrapy的item pipeline是同一個對象,通過從settings中拿到我們配置的REDIS_ITEMS_KEY作為key,把item串行化之后存入redis數(shù)據(jù)庫對應的value中(這個value可以看出出是個list,我們的每個item是這個list中的一個結點),這個pipeline把提取出的item存起來,主要是為了方便我們延后處理數(shù)據(jù)。
scheduler.py
此擴展是對scrapy中自帶的scheduler的替代(在settings的SCHEDULER變量中指出),正是利用此擴展實現(xiàn)crawler的分布式調度。其利用的數(shù)據(jù)結構來自于queue中實現(xiàn)的數(shù)據(jù)結構。
scrapy-redis所實現(xiàn)的兩種分布式:爬蟲分布式以及item處理分布式就是由模塊scheduler和模塊pipelines實現(xiàn)。上述其它模塊作為為二者輔助的功能模塊。
import importlib
import six
from scrapy.utils.misc import load_object
from . import connection
# TODO: add SCRAPY_JOB support.
class Scheduler(object):
"""Redis-based scheduler"""
def __init__(self, server,
persist=False,
flush_on_start=False,
queue_key='%(spider)s:requests',
queue_cls='scrapy_redis.queue.SpiderPriorityQueue',
dupefilter_key='%(spider)s:dupefilter',
dupefilter_cls='scrapy_redis.dupefilter.RFPDupeFilter',
idle_before_close=0,
serializer=None):
"""Initialize scheduler.
Parameters
----------
server : Redis
The redis server instance.
persist : bool
Whether to flush requests when closing. Default is False.
flush_on_start : bool
Whether to flush requests on start. Default is False.
queue_key : str
Requests queue key.
queue_cls : str
Importable path to the queue class.
dupefilter_key : str
Duplicates filter key.
dupefilter_cls : str
Importable path to the dupefilter class.
idle_before_close : int
Timeout before giving up.
"""
if idle_before_close < 0:
raise TypeError("idle_before_close cannot be negative")
self.server = server
self.persist = persist
self.flush_on_start = flush_on_start
self.queue_key = queue_key
self.queue_cls = queue_cls
self.dupefilter_cls = dupefilter_cls
self.dupefilter_key = dupefilter_key
self.idle_before_close = idle_before_close
self.serializer = serializer
self.stats = None
def __len__(self):
return len(self.queue)
@classmethod
def from_settings(cls, settings):
kwargs = {
'persist': settings.getbool('SCHEDULER_PERSIST'),
'flush_on_start': settings.getbool('SCHEDULER_FLUSH_ON_START'),
'idle_before_close': settings.getint('SCHEDULER_IDLE_BEFORE_CLOSE'),
}
# If these values are missing, it means we want to use the defaults.
optional = {
# TODO: Use custom prefixes for this settings to note that are
# specific to scrapy-redis.
'queue_key': 'SCHEDULER_QUEUE_KEY',
'queue_cls': 'SCHEDULER_QUEUE_CLASS',
'dupefilter_key': 'SCHEDULER_DUPEFILTER_KEY',
# We use the default setting name to keep compatibility.
'dupefilter_cls': 'DUPEFILTER_CLASS',
'serializer': 'SCHEDULER_SERIALIZER',
}
for name, setting_name in optional.items():
val = settings.get(setting_name)
if val:
kwargs[name] = val
# Support serializer as a path to a module.
if isinstance(kwargs.get('serializer'), six.string_types):
kwargs['serializer'] = importlib.import_module(kwargs['serializer'])
server = connection.from_settings(settings)
# Ensure the connection is working.
server.ping()
return cls(server=server, **kwargs)
@classmethod
def from_crawler(cls, crawler):
instance = cls.from_settings(crawler.settings)
# FIXME: for now, stats are only supported from this constructor
instance.stats = crawler.stats
return instance
def open(self, spider):
self.spider = spider
try:
self.queue = load_object(self.queue_cls)(
server=self.server,
spider=spider,
key=self.queue_key % {'spider': spider.name},
serializer=self.serializer,
)
except TypeError as e:
raise ValueError("Failed to instantiate queue class '%s': %s",
self.queue_cls, e)
try:
self.df = load_object(self.dupefilter_cls)(
server=self.server,
key=self.dupefilter_key % {'spider': spider.name},
debug=spider.settings.getbool('DUPEFILTER_DEBUG'),
)
except TypeError as e:
raise ValueError("Failed to instantiate dupefilter class '%s': %s",
self.dupefilter_cls, e)
if self.flush_on_start:
self.flush()
# notice if there are requests already in the queue to resume the crawl
if len(self.queue):
spider.log("Resuming crawl (%d requests scheduled)" % len(self.queue))
def close(self, reason):
if not self.persist:
self.flush()
def flush(self):
self.df.clear()
self.queue.clear()
def enqueue_request(self, request):
if not request.dont_filter and self.df.request_seen(request):
self.df.log(request, self.spider)
return False
if self.stats:
self.stats.inc_value('scheduler/enqueued/redis', spider=self.spider)
self.queue.push(request)
return True
def next_request(self):
block_pop_timeout = self.idle_before_close
request = self.queue.pop(block_pop_timeout)
if request and self.stats:
self.stats.inc_value('scheduler/dequeued/redis', spider=self.spider)
return request
def has_pending_requests(self):
return len(self) > 0
這個文件重寫了scheduler類,用來代替scrapy.core.scheduler的原有調度器。其實對原有調度器的邏輯沒有很大的改變,主要是使用了redis作為數(shù)據(jù)存儲的媒介,以達到各個爬蟲之間的統(tǒng)一調度。
scheduler負責調度各個spider的request請求,scheduler初始化時,通過settings文件讀取queue和dupefilters的類型(一般就用上邊默認的),配置queue和dupefilters使用的key(一般就是spider name加上queue或者dupefilters,這樣對于同一種spider的不同實例,就會使用相同的數(shù)據(jù)塊了)。每當一個request要被調度時,enqueue_request被調用,scheduler使用dupefilters來判斷這個url是否重復,如果不重復,就添加到queue的容器中(先進先出,先進后出和優(yōu)先級都可以,可以在settings中配置)。當調度完成時,next_request被調用,scheduler就通過queue容器的接口,取出一個request,把他發(fā)送給相應的spider,讓spider進行爬取工作。
spider.py
設計的這個spider從redis中讀取要爬的url,然后執(zhí)行爬取,若爬取過程中返回更多的url,那么繼續(xù)進行直至所有的request完成。之后繼續(xù)從redis中讀取url,循環(huán)這個過程。
from scrapy import signals
from scrapy.exceptions import DontCloseSpider
from scrapy.spiders import Spider, CrawlSpider
from . import connection
class RedisMixin(object):
"""Mixin class to implement reading urls from a redis queue."""
redis_key = None # If empty, uses default '<spider>:start_urls'.
# Fetch this amount of start urls when idle.
redis_batch_size = 100
# Redis client instance.
server = None
def start_requests(self):
"""Returns a batch of start requests from redis."""
return self.next_requests()
def setup_redis(self, crawler=None):
"""Setup redis connection and idle signal.
This should be called after the spider has set its crawler object.
"""
if self.server is not None:
return
if crawler is None:
# We allow optional crawler argument to keep backwrads
# compatibility.
# XXX: Raise a deprecation warning.
assert self.crawler, "crawler not set"
crawler = self.crawler
if not self.redis_key:
self.redis_key = '%s:start_urls' % self.name
self.log("Reading URLs from redis key '%s'" % self.redis_key)
self.redis_batch_size = self.settings.getint(
'REDIS_START_URLS_BATCH_SIZE',
self.redis_batch_size,
)
self.server = connection.from_settings(crawler.settings)
# The idle signal is called when the spider has no requests left,
# that's when we will schedule new requests from redis queue
crawler.signals.connect(self.spider_idle, signal=signals.spider_idle)
def next_requests(self):
"""Returns a request to be scheduled or none."""
use_set = self.settings.getbool('REDIS_START_URLS_AS_SET')
fetch_one = self.server.spop if use_set else self.server.lpop
# XXX: Do we need to use a timeout here?
found = 0
while found < self.redis_batch_size:
data = fetch_one(self.redis_key)
if not data:
# Queue empty.
break
yield self.make_request_from_data(data)
found += 1
if found:
self.logger.debug("Read %s requests from '%s'", found, self.redis_key)
def make_request_from_data(self, data):
# By default, data is an URL.
if '://' in data:
return self.make_requests_from_url(data)
else:
self.logger.error("Unexpected URL from '%s': %r", self.redis_key, data)
def schedule_next_requests(self):
"""Schedules a request if available"""
for req in self.next_requests():
self.crawler.engine.crawl(req, spider=self)
def spider_idle(self):
"""Schedules a request if available, otherwise waits."""
# XXX: Handle a sentinel to close the spider.
self.schedule_next_requests()
raise DontCloseSpider
class RedisSpider(RedisMixin, Spider):
"""Spider that reads urls from redis queue when idle."""
@classmethod
def from_crawler(self, crawler):
obj = super(RedisSpider, self).from_crawler(crawler)
obj.setup_redis(crawler)
return obj
class RedisCrawlSpider(RedisMixin, CrawlSpider):
"""Spider that reads urls from redis queue when idle."""
@classmethod
def from_crawler(self, crawler):
obj = super(RedisCrawlSpider, self).from_crawler(crawler)
obj.setup_redis(crawler)
return obj
spider的改動也不是很大,主要是通過connect接口,給spider綁定了spider_idle信號,spider初始化時,通過setup_redis函數(shù)初始化好和redis的連接,之后通過next_requests函數(shù)從redis中取出strat url,使用的key是settings中
REDIS_START_URLS_AS_SET定義的(注意了這里的初始化url池和我們上邊的queue的url池不是一個東西,queue的池是用于調度的,初始化url池是存放入口url的,他們都存在redis中,但是使用不同的key來區(qū)分,就當成是不同的表吧),spider使用少量的start url,可以發(fā)展出很多新的url,這些url會進入scheduler進行判重和調度。直到spider跑到調度池內沒有url的時候,會觸發(fā)spider_idle信號,從而觸發(fā)spider的next_requests函數(shù),再次從redis的start url池中讀取一些url。
組件之間的關系

最后總結一下scrapy-redis的總體思路:這個工程通過重寫scheduler和spider類,實現(xiàn)了調度、spider啟動和redis的交互。實現(xiàn)新的dupefilter和queue類,達到了判重和調度容器和redis的交互,因為每個主機上的爬蟲進程都訪問同一個redis數(shù)據(jù)庫,所以調度和判重都統(tǒng)一進行統(tǒng)一管理,達到了分布式爬蟲的目的。
當spider被初始化時,同時會初始化一個對應的scheduler對象,這個調度器對象通過讀取settings,配置好自己的調度容器queue和判重工具dupefilter。每當一個spider產出一個request的時候,scrapy內核會把這個reuqest遞交給這個spider對應的scheduler對象進行調度,scheduler對象通過訪問redis對request進行判重,如果不重復就把他添加進redis中的調度池。當調度條件滿足時,scheduler對象就從redis的調度池中取出一個request發(fā)送給spider,讓他爬取。當spider爬取的所有暫時可用url之后,scheduler發(fā)現(xiàn)這個spider對應的redis的調度池空了,于是觸發(fā)信號spider_idle,spider收到這個信號之后,直接連接redis讀取strart url池,拿去新的一批url入口,然后再次重復上邊的工作。
為什么要提供這些組件?
我們先從scrapy的“待爬隊列”和“Scheduler”入手:玩過爬蟲的同學都多多少少有些了解,在爬蟲爬取過程當中有一個主要的數(shù)據(jù)結構是“待爬隊列”,以及能夠操作這個隊列的調度器(也就是Scheduler)。scrapy官方文檔對這二者的描述不多,基本上沒提。
scrapy使用什么樣的數(shù)據(jù)結構來存放待爬取的request呢?其實沒用高大上的數(shù)據(jù)結構,就是python自帶的collection.deque(改造過后的),問題來了,該怎么讓兩個以上的Spider共用這個deque呢?
scrapy-redis提供了一個解決方法,把deque換成redis數(shù)據(jù)庫,我們從同一個redis服務器存放要爬取的request,這樣就能讓多個spider去同一個數(shù)據(jù)庫里讀取,這樣分布式的主要問題就解決了嘛。
那么問題又來了,我們換了redis來存放隊列,哪scrapy就能直接分布式了么?。scrapy中跟“待爬隊列”直接相關的就是調度器“Scheduler”,它負責對新的request進行入列操作(加入deque),取出下一個要爬取的request(從deque中取出)等操作。在scrapy中,Scheduler并不是直接就把deque拿來就粗暴的使用了,而且提供了一個比較高級的組織方法,它把待爬隊列按照優(yōu)先級建立了一個字典結構,比如:
{
priority0:隊列0
priority1:隊列2
priority2:隊列2
}
然后根據(jù)request中的priority屬性,來決定該入哪個隊列。而出列時,則按priority較小的優(yōu)先出列。為了管理這個比較高級的隊列字典,Scheduler需要提供一系列的方法。你要是換了redis做隊列,這個scrapy下的Scheduler就用不了,所以自己寫一個吧。于是就出現(xiàn)了scrapy-redis的專用scheduler。
那么既然使用了redis做主要數(shù)據(jù)結構,能不能把其他使用自帶數(shù)據(jù)結構關鍵功能模塊也換掉呢? 在我們爬取過程當中,還有一個重要的功能模塊,就是request去重。scrapy中是如何實現(xiàn)這個去重功能的呢?用集合~scrapy中把已經發(fā)送的request指紋放入到一個集合中,把下一個request的指紋拿到集合中比對,如果該指紋存在于集合中,說明這個request發(fā)送過了,如果沒有則繼續(xù)操作。
為了分布式,把這個集合也換掉吧,換了redis,照樣也得把去重類給換了。于是就有了scrapy-redis的dupefilter。那么依次類推,接下來的其他組件(Pipeline和Spider),我們也可以輕松的猜到,他們是為什么要被修改呢。
總結
以上就是這篇文章的全部內容了,希望本文的內容對大家的學習或者工作能帶來一定的幫助,如果有疑問大家可以留言交流。
相關文章
Python實現(xiàn)過濾單個Android程序日志腳本分享
這篇文章主要介紹了Python實現(xiàn)過濾單個Android程序日志腳本分享,本文講解了原理、實現(xiàn)代碼、使用方法、最新代碼等內容,需要的朋友可以參考下2015-01-01
python計算階乘和的方法(1!+2!+3!+...+n!)
今天小編就為大家分享一篇python計算階乘和的方法(1!+2!+3!+...+n!),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-02-02
Python基于pygame實現(xiàn)單機版五子棋對戰(zhàn)
這篇文章主要為大家詳細介紹了Python基于pygame實現(xiàn)單機版五子棋對戰(zhàn),文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下2019-12-12
PyTorch 解決Dataset和Dataloader遇到的問題
今天小編就為大家分享一篇PyTorch 解決Dataset和Dataloader遇到的問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-01-01

