python使用opencv進(jìn)行人臉識別
環(huán)境
ubuntu 12.04 LTS
python 2.7.3
opencv 2.3.1-7
安裝依賴
sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy
示例代碼
#!/usr/bin/env python
#coding=utf-8
import os
from PIL import Image, ImageDraw
import cv
def detect_object(image):
'''檢測圖片,獲取人臉在圖片中的坐標(biāo)'''
grayscale = cv.CreateImage((image.width, image.height), 8, 1)
cv.CvtColor(image, grayscale, cv.CV_BGR2GRAY)
cascade = cv.Load("/usr/share/opencv/haarcascades/haarcascade_frontalface_alt_tree.xml")
rect = cv.HaarDetectObjects(grayscale, cascade, cv.CreateMemStorage(), 1.1, 2,
cv.CV_HAAR_DO_CANNY_PRUNING, (20,20))
result = []
for r in rect:
result.append((r[0][0], r[0][1], r[0][0]+r[0][2], r[0][1]+r[0][3]))
return result
def process(infile):
'''在原圖上框出頭像并且截取每個頭像到單獨(dú)文件夾'''
image = cv.LoadImage(infile);
if image:
faces = detect_object(image)
im = Image.open(infile)
path = os.path.abspath(infile)
save_path = os.path.splitext(path)[0]+"_face"
try:
os.mkdir(save_path)
except:
pass
if faces:
draw = ImageDraw.Draw(im)
count = 0
for f in faces:
count += 1
draw.rectangle(f, outline=(255, 0, 0))
a = im.crop(f)
file_name = os.path.join(save_path,str(count)+".jpg")
# print file_name
a.save(file_name)
drow_save_path = os.path.join(save_path,"out.jpg")
im.save(drow_save_path, "JPEG", quality=80)
else:
print "Error: cannot detect faces on %s" % infile
if __name__ == "__main__":
process("./opencv_in.jpg")
轉(zhuǎn)換效果
原圖:

轉(zhuǎn)換后

使用感受
對于大部分圖像來說,只要是頭像是正面的,沒有被阻擋,識別基本沒問題,準(zhǔn)確性還是很高的。
識別效率有點(diǎn)低,有時候一張圖片能處理七八秒才能處理完,當(dāng)然這個和機(jī)器配置有關(guān)。 如果想加速的話可以使用C語言重寫,經(jīng)測試,C語言版的所花時間大約是python的一半
另外,官方提供了幾個庫可一選擇,這里使用的是haarcascade_frontalface_alt_tree.xml, 除此之外, /usr/share/opencv/haarcascades/文件夾下還有幾個庫:
~~/usr/share/opencv/haarcascades>> ll -h 總用量 19M drwxr-xr-x 2 root root 4.0K 3月 22 17:14 ./ drwxr-xr-x 4 root root 4.0K 3月 22 17:14 ../ -rw-r--r-- 1 root root 1.1M 4月 28 2011 haarcascade_eye_tree_eyeglasses.xml -rw-r--r-- 1 root root 495K 4月 28 2011 haarcascade_eye.xml -rw-r--r-- 1 root root 818K 4月 28 2011 haarcascade_frontalface_alt2.xml -rw-r--r-- 1 root root 3.5M 4月 28 2011 haarcascade_frontalface_alt_tree.xml -rw-r--r-- 1 root root 899K 4月 28 2011 haarcascade_frontalface_alt.xml -rw-r--r-- 1 root root 1.2M 4月 28 2011 haarcascade_frontalface_default.xml -rw-r--r-- 1 root root 622K 4月 28 2011 haarcascade_fullbody.xml -rw-r--r-- 1 root root 316K 4月 28 2011 haarcascade_lefteye_2splits.xml -rw-r--r-- 1 root root 520K 4月 28 2011 haarcascade_lowerbody.xml -rw-r--r-- 1 root root 350K 4月 28 2011 haarcascade_mcs_eyepair_big.xml -rw-r--r-- 1 root root 401K 4月 28 2011 haarcascade_mcs_eyepair_small.xml -rw-r--r-- 1 root root 306K 8月 2 2011 haarcascade_mcs_leftear.xml -rw-r--r-- 1 root root 760K 4月 28 2011 haarcascade_mcs_lefteye.xml -rw-r--r-- 1 root root 703K 4月 28 2011 haarcascade_mcs_mouth.xml -rw-r--r-- 1 root root 1.6M 4月 28 2011 haarcascade_mcs_nose.xml -rw-r--r-- 1 root root 318K 8月 2 2011 haarcascade_mcs_rightear.xml -rw-r--r-- 1 root root 1.4M 4月 28 2011 haarcascade_mcs_righteye.xml -rw-r--r-- 1 root root 1.5M 4月 28 2011 haarcascade_mcs_upperbody.xml -rw-r--r-- 1 root root 1.1M 4月 28 2011 haarcascade_profileface.xml -rw-r--r-- 1 root root 317K 4月 28 2011 haarcascade_righteye_2splits.xml -rw-r--r-- 1 root root 1022K 4月 28 2011 haarcascade_upperbody.xml ~/usr/share/opencv/haarcascades>>
根據(jù)文件名大家應(yīng)該能知道是識別什么的。值得一提的是,這里面有四個關(guān)于人臉(frontalface)的識別庫, 根據(jù)我的使用體驗(yàn),default這個xml識別的最多,這就意味著本來不是頭像的也識別成頭像了。 alt_tree這個庫雖然是最大的,但并不意味著這個庫是最好的,應(yīng)該說,用這個庫,識別是最嚴(yán)格的, 這就意味著,有些頭像不能被識別,因?yàn)楦鶕?jù)他的算法,他認(rèn)為這不是頭像。 其余兩個和alt_tree差不多。具體識別細(xì)節(jié)大家可以打開相應(yīng)的xml看一下。
上面的代碼只是識別面部,并不包括頭發(fā),如果大家想抓一個完整的頭像的話, 可以將識別出來的矩形框的上邊緣增加一定的比例,比如增加20%頭像的高度。
附:C++語言人臉識別代碼
網(wǎng)上找的,親測可用,效率比python高一點(diǎn)。
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>
#ifdef _EiC
#define WIN32
#endif
static CvMemStorage* storage = 0;
static CvHaarClassifierCascade* cascade = 0;
void detect_and_draw( IplImage* image );
const char* cascade_name =
"haarcascade_frontalface_alt.xml";
/* "haarcascade_profileface.xml";*/
int main( int argc, char** argv )
{
CvCapture* capture = 0;
IplImage *frame, *frame_copy = 0;
int optlen = strlen("--cascade=");
const char* input_name;
if( argc > 1 && strncmp( argv[1], "--cascade=", optlen ) == 0 )
{
cascade_name = argv[1] + optlen;
input_name = argc > 2 ? argv[2] : 0;
}
else
{
cascade_name = "/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml";
//opencv裝好后haarcascade_frontalface_alt2.xml的路徑,
//也可以把這個文件拷到你的工程文件夾下然后不用寫路徑名cascade_name= "haarcascade_frontalface_alt2.xml";
//或者cascade_name ="C:\\Program Files\\OpenCV\\data\\haarcascades\\haarcascade_frontalface_alt2.xml"
input_name = argc > 1 ? argv[1] : 0;
}
cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );
if( !cascade )
{
fprintf( stderr, "ERROR: Could not load classifier cascade\n" );
fprintf( stderr,
"Usage: facedetect --cascade=\"<cascade_path>\" [filename|camera_index]\n" );
return -1;
}
storage = cvCreateMemStorage(0);
if( !input_name || (isdigit(input_name[0]) && input_name[1] == '\0') )
capture = cvCaptureFromCAM( !input_name ? 0 : input_name[0] - '0' );
else
capture = cvCaptureFromAVI( input_name );
cvNamedWindow( "result", 1 );
if( capture )
{
for(;;)
{
if( !cvGrabFrame( capture ))
break;
frame = cvRetrieveFrame( capture );
if( !frame )
break;
if( !frame_copy )
frame_copy = cvCreateImage( cvSize(frame->width,frame->height),
IPL_DEPTH_8U, frame->nChannels );
if( frame->origin == IPL_ORIGIN_TL )
cvCopy( frame, frame_copy, 0 );
else
cvFlip( frame, frame_copy, 0 );
detect_and_draw( frame_copy );
if( cvWaitKey( 10 ) >= 0 )
break;
}
cvReleaseImage( &frame_copy );
cvReleaseCapture( &capture );
}
else
{
const char* filename = input_name ? input_name : (char*)"lena.jpg";
IplImage* image = cvLoadImage( filename, 1 );
if( image )
{
detect_and_draw( image );
cvWaitKey(0);
cvReleaseImage( &image );
}
else
{
/* assume it is a text file containing the
list of the image filenames to be processed - one per line */
FILE* f = fopen( filename, "rt" );
if( f )
{
char buf[1000+1];
while( fgets( buf, 1000, f ) )
{
int len = (int)strlen(buf);
while( len > 0 && isspace(buf[len-1]) )
len--;
buf[len] = '\0';
image = cvLoadImage( buf, 1 );
if( image )
{
detect_and_draw( image );
cvWaitKey(0);
cvReleaseImage( &image );
}
}
fclose(f);
}
}
}
// getchar();
cvDestroyWindow("result");
return 0;
}
void detect_and_draw( IplImage* img )
{
static CvScalar colors[] =
{
{{0,0,255}},
{{0,128,255}},
{{0,255,255}},
{{0,255,0}},
{{255,128,0}},
{{255,255,0}},
{{255,0,0}},
{{255,0,255}}
};
double scale = 1.3;
IplImage* gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );
IplImage* small_img = cvCreateImage( cvSize( cvRound (img->width/scale),
cvRound (img->height/scale)),
8, 1 );
int i;
cvCvtColor( img, gray, CV_BGR2GRAY );
cvResize( gray, small_img, CV_INTER_LINEAR );
cvEqualizeHist( small_img, small_img );
cvClearMemStorage( storage );
if( cascade )
{
double t = (double)cvGetTickCount();
CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,
1.1, 2, 0/*CV_HAAR_DO_CANNY_PRUNING*/,
cvSize(30, 30) );
t = (double)cvGetTickCount() - t;
printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );
for( i = 0; i < (faces ? faces->total : 0); i++ )
{
CvRect* r = (CvRect*)cvGetSeqElem( faces, i );
CvPoint center;
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
cvCircle( img, center, radius, colors[i%8], 3, 8, 0 );
}
}
cvShowImage( "result", img );
cvReleaseImage( &gray );
cvReleaseImage( &small_img );
}
以上就是本文的全部內(nèi)容,希望本文的內(nèi)容對大家的學(xué)習(xí)或者工作能帶來一定的幫助,同時也希望多多支持腳本之家!
- python實(shí)現(xiàn)讀取并顯示圖片的兩種方法
- Python實(shí)現(xiàn)彈球小游戲的示例代碼
- 用python實(shí)現(xiàn)彈球小游戲
- 用Python寫一個簡易版彈球游戲
- python實(shí)現(xiàn)簡單反彈球游戲
- python 實(shí)現(xiàn)彈球游戲的示例代碼
- Python實(shí)現(xiàn)彈球小游戲
- 使用python和pygame制作擋板彈球游戲
- python pygame實(shí)現(xiàn)擋板彈球游戲
- python運(yùn)用pygame庫實(shí)現(xiàn)雙人彈球小游戲
- python3實(shí)現(xiàn)彈彈球小游戲
- Python基于Tkinter模塊實(shí)現(xiàn)的彈球小游戲
- python編寫彈球游戲的實(shí)現(xiàn)代碼
- Python實(shí)現(xiàn)的彈球小游戲示例
- Python彈球小游戲的項(xiàng)目代碼
相關(guān)文章
Ubuntu16.04 安裝多個python版本的問題及解決方法
Ubuntu16.04自帶python2.7與python3.5,Ubuntu 官方 apt 庫中還未收錄 python 3.8,因此添加 deadsnakes PPA 源安裝python3.8,否則會出現(xiàn)報錯,接下來通過本文給大家介紹Ubuntu16.04 安裝python的問題,一起看看吧2021-09-09
Django 設(shè)置admin后臺表和App(應(yīng)用)為中文名的操作方法
這篇文章主要介紹了Django 設(shè)置admin后臺表和App(應(yīng)用)為中文名的操作方法,本文通過實(shí)例代碼給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2020-05-05
python實(shí)現(xiàn)ip地址的包含關(guān)系判斷
這篇文章主要介紹了python實(shí)現(xiàn)ip地址的包含關(guān)系判斷,本文通過實(shí)例代碼給大家介紹的非常詳細(xì),具有一定的參考借鑒價值,需要的朋友可以參考下2020-02-02
如何使用PyCharm將代碼上傳到GitHub上(圖文詳解)
這篇文章主要介紹了如何使用PyCharm將代碼上傳到GitHub上(圖文詳解),文中通過圖文介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-04-04
教你用Python查看茅臺股票交易數(shù)據(jù)的詳細(xì)代碼
CSV是以逗號分隔數(shù)據(jù)項(xiàng)(也被稱為字段)的數(shù)據(jù)交換格式,主要應(yīng)用于電子表格和數(shù)據(jù)庫之間的數(shù)據(jù)交換,本文給大家介紹下用Python查看茅臺股票交易數(shù)據(jù)的詳細(xì)代碼,感興趣的朋友一起看看吧2022-03-03

