Tensorflow簡單驗證碼識別應用
簡單的Tensorflow驗證碼識別應用,供大家參考,具體內容如下
1.Tensorflow的安裝方式簡單,在此就不贅述了.
2.訓練集訓練集以及測試及如下(純手工打造,所以數(shù)量不多):
3.實現(xiàn)代碼部分(參考了網上的一些實現(xiàn)來完成的)
main.py(主要的神經網絡代碼)
from gen_check_code import gen_captcha_text_and_image_new,gen_captcha_text_and_image from gen_check_code import number from test_check_code import get_test_captcha_text_and_image import numpy as np import tensorflow as tf text, image = gen_captcha_text_and_image_new() print("驗證碼圖像channel:", image.shape) # (60, 160, 3) # 圖像大小 IMAGE_HEIGHT = image.shape[0] IMAGE_WIDTH = image.shape[1] image_shape = image.shape MAX_CAPTCHA = len(text) print("驗證碼文本最長字符數(shù)", MAX_CAPTCHA) # 驗證碼最長4字符; 我全部固定為4,可以不固定. 如果驗證碼長度小于4,用'_'補齊 # 把彩色圖像轉為灰度圖像(色彩對識別驗證碼沒有什么用) # 度化是將三分量轉化成一樣數(shù)值的過程 def convert2gray(img): if len(img.shape) > 2: gray = np.mean(img, -1) # 上面的轉法較快,正規(guī)轉法如下 # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2] # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b # int gray = (int) (0.3 * r + 0.59 * g + 0.11 * b); return gray else: return img """ cnn在圖像大小是2的倍數(shù)時性能最高, 如果你用的圖像大小不是2的倍數(shù),可以在圖像邊緣補無用像素。 np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,)) # 在圖像上補2行,下補3行,左補2行,右補2行 """ char_set = number # 如果驗證碼長度小于4, '_'用來補齊 CHAR_SET_LEN = len(char_set) # 文本轉向量 def text2vec(text): text_len = len(text) if text_len > MAX_CAPTCHA: raise ValueError('驗證碼最長4個字符') vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN) def char2pos(c): try: k = ord(c)-ord('0') except: raise ValueError('No Map') return k for i, c in enumerate(text): idx = i * CHAR_SET_LEN + char2pos(c) vector[idx] = 1 return vector # 向量轉回文本 def vec2text(vec): char_pos = vec.nonzero()[0] text = [] for i, c in enumerate(char_pos): char_at_pos = i # c/63 char_idx = c % CHAR_SET_LEN if char_idx < 10: char_code = char_idx + ord('0') elif char_idx < 36: char_code = char_idx - 10 + ord('A') elif char_idx < 62: char_code = char_idx - 36 + ord('a') elif char_idx == 62: char_code = ord('_') else: raise ValueError('error') text.append(chr(char_code)) return "".join(text) # 生成一個訓練batch def get_next_batch(batch_size=128): batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH]) batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN]) # 有時生成圖像大小不是(60, 160, 3) def wrap_gen_captcha_text_and_image(): while True: text, image = gen_captcha_text_and_image_new() if image.shape == image_shape: return text, image for i in range(batch_size): text, image = wrap_gen_captcha_text_and_image() image = convert2gray(image) batch_x[i, :] = image.flatten() / 255 # (image.flatten()-128)/128 mean為0 batch_y[i, :] = text2vec(text) return batch_x, batch_y #################################################################### X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH]) Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN]) keep_prob = tf.placeholder(tf.float32) # dropout # 定義CNN def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1): x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1]) # w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) # # w_c2_alpha = np.sqrt(2.0/(3*3*32)) # w_c3_alpha = np.sqrt(2.0/(3*3*64)) # w_d1_alpha = np.sqrt(2.0/(8*32*64)) # out_alpha = np.sqrt(2.0/1024) # 定義三層的卷積神經網絡 # 定義第一層的卷積神經網絡 # 定義第一層權重 w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32])) # 定義第一層的偏置 b_c1 = tf.Variable(b_alpha * tf.random_normal([32])) # 定義第一層的激勵函數(shù) conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)) # conv1 為輸入 ksize 表示使用2*2池化,即將2*2的色塊轉化成1*1的色塊 conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # dropout防止過擬合。 conv1 = tf.nn.dropout(conv1, keep_prob) # 定義第二層的卷積神經網絡 w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64])) b_c2 = tf.Variable(b_alpha * tf.random_normal([64])) conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2)) conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv2 = tf.nn.dropout(conv2, keep_prob) # 定義第三層的卷積神經網絡 w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64])) b_c3 = tf.Variable(b_alpha * tf.random_normal([64])) conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3)) conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv3 = tf.nn.dropout(conv3, keep_prob) # Fully connected layer # 隨機生成權重 w_d = tf.Variable(w_alpha * tf.random_normal([1536, 1024])) # 隨機生成偏置 b_d = tf.Variable(b_alpha * tf.random_normal([1024])) dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]]) dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d)) dense = tf.nn.dropout(dense, keep_prob) w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN])) b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN])) out = tf.add(tf.matmul(dense, w_out), b_out) # out = tf.nn.softmax(out) return out # 訓練 def train_crack_captcha_cnn(): # X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH]) # Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN]) # keep_prob = tf.placeholder(tf.float32) # dropout output = crack_captcha_cnn() # loss # loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y)) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(output, Y)) # 最后一層用來分類的softmax和sigmoid有什么不同? # optimizer 為了加快訓練 learning_rate應該開始大,然后慢慢衰 optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) max_idx_p = tf.argmax(predict, 2) max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) correct_pred = tf.equal(max_idx_p, max_idx_l) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 0 while True: batch_x, batch_y = get_next_batch(64) _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75}) print(step, loss_) # 每100 step計算一次準確率 if step % 100 == 0: batch_x_test, batch_y_test = get_next_batch(100) acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.}) print(step, acc) # 如果準確率大于50%,保存模型,完成訓練 if acc > 0.99: saver.save(sess, "./crack_capcha.model", global_step=step) break step += 1 ## 訓練(如果要訓練則去掉下面一行的注釋) train_crack_captcha_cnn() def crack_captcha(): output = crack_captcha_cnn() saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('.')) predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) count = 0 # 因為測試集共40個...寫的很草率 for i in range(40): text, image = get_test_captcha_text_and_image(i) image = convert2gray(image) captcha_image = image.flatten() / 255 text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1}) predict_text = text_list[0].tolist() predict_text = str(predict_text) predict_text = predict_text.replace("[", "").replace("]", "").replace(",", "").replace(" ","") if text == predict_text: count += 1 check_result = ",預測結果正確" else: check_result = ",預測結果不正確" print("正確: {} 預測: {}".format(text, predict_text) + check_result) print("正確率:" + str(count) + "/40") # 測試(如果要測試則去掉下面一行的注釋) # crack_captcha()
gen_check_code.py(得到訓練集輸入,需要注意修改root_dir為訓練集的輸入文件夾,下同)
from captcha.image import ImageCaptcha # pip install captcha import numpy as np from PIL import Image import random # import matplotlib.pyplot as plt import os from random import choice # 驗證碼中的字符, 就不用漢字了 number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] # alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', # 'v', 'w', 'x', 'y', 'z'] # ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', # 'V', 'W', 'X', 'Y', 'Z'] root_dir = "d:\\train" # 驗證碼一般都無視大小寫;驗證碼長度4個字符 def random_captcha_text(char_set=number, captcha_size=4): captcha_text = [] for i in range(captcha_size): c = random.choice(char_set) captcha_text.append(c) return captcha_text # 生成字符對應的驗證碼 def gen_captcha_text_and_image(): image = ImageCaptcha() captcha_text = random_captcha_text() captcha_text = ''.join(captcha_text) captcha = image.generate(captcha_text) # image.write(captcha_text, captcha_text + '.jpg') # 寫到文件 captcha_image = Image.open(captcha) captcha_image = np.array(captcha_image) return captcha_text, captcha_image def gen_list(): img_list = [] for parent, dirnames, filenames in os.walk(root_dir): # 三個參數(shù):分別返回1.父目錄 2.所有文件夾名字(不含路徑) 3.所有文件名字 for filename in filenames: # 輸出文件信息 img_list.append(filename.replace(".gif","")) # print("parent is:" + parent) # print("filename is:" + filename) # print("the full name of the file is:" + os.path.join(parent, filename)) # 輸出文件路徑信息 return img_list img_list = gen_list() def gen_captcha_text_and_image_new(): img = choice(img_list) captcha_image = Image.open(root_dir + "\\" + img + ".gif") captcha_image = np.array(captcha_image) return img, captcha_image # if __name__ == '__main__': # # 測試 # # text, image = gen_captcha_text_and_image() # # # # f = plt.figure() # # ax = f.add_subplot(111) # # ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes) # # plt.imshow(image) # # plt.show() # # # # text, image = gen_captcha_text_and_image_new() # # f = plt.figure() # ax = f.add_subplot(111) # ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes) # plt.imshow(image) # plt.show()
test_check_code.py(得到測試集輸入)
from captcha.image import ImageCaptcha # pip install captcha import numpy as np from PIL import Image import random import matplotlib.pyplot as plt import os from random import choice root_dir = "d:\\test" img_list = [] def gen_list(): for parent, dirnames, filenames in os.walk(root_dir): # 三個參數(shù):分別返回1.父目錄 2.所有文件夾名字(不含路徑) 3.所有文件名字 for filename in filenames: # 輸出文件信息 img_list.append(filename.replace(".gif","")) # print("parent is:" + parent) # print("filename is:" + filename) # print("the full name of the file is:" + os.path.join(parent, filename)) # 輸出文件路徑信息 return img_list img_list = gen_list() def get_test_captcha_text_and_image(i=None): img = img_list[i] captcha_image = Image.open(root_dir + "\\" + img + ".gif") captcha_image = np.array(captcha_image) return img, captcha_image
4.效果
在測試集上的識別率
5.相關文件下載
訓練集以及測試集 下載
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
Python爬蟲請求模塊Urllib及Requests庫安裝使用教程
requests和urllib都是Python中常用的HTTP請求庫,使用時需要根據(jù)實際情況選擇,如果要求使用簡單、功能完善、性能高的HTTP請求庫,可以選擇requests,如果需要兼容性更好、功能更加靈活的HTTP請求庫,可以選擇urllib2023-11-11python機器學習deepchecks庫訓練檢查模型特點探索
這篇文章主要介紹了python機器學習deepchecks庫的訓練檢查模型特點實例探索,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2024-01-01解決Python報錯No module named Crypto問題
這篇文章主要介紹了解決Python報錯No module named“Crypto”問題,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2024-06-06