Tensorflow簡(jiǎn)單驗(yàn)證碼識(shí)別應(yīng)用
簡(jiǎn)單的Tensorflow驗(yàn)證碼識(shí)別應(yīng)用,供大家參考,具體內(nèi)容如下
1.Tensorflow的安裝方式簡(jiǎn)單,在此就不贅述了.
2.訓(xùn)練集訓(xùn)練集以及測(cè)試及如下(純手工打造,所以數(shù)量不多):


3.實(shí)現(xiàn)代碼部分(參考了網(wǎng)上的一些實(shí)現(xiàn)來(lái)完成的)
main.py(主要的神經(jīng)網(wǎng)絡(luò)代碼)
from gen_check_code import gen_captcha_text_and_image_new,gen_captcha_text_and_image
from gen_check_code import number
from test_check_code import get_test_captcha_text_and_image
import numpy as np
import tensorflow as tf
text, image = gen_captcha_text_and_image_new()
print("驗(yàn)證碼圖像channel:", image.shape) # (60, 160, 3)
# 圖像大小
IMAGE_HEIGHT = image.shape[0]
IMAGE_WIDTH = image.shape[1]
image_shape = image.shape
MAX_CAPTCHA = len(text)
print("驗(yàn)證碼文本最長(zhǎng)字符數(shù)", MAX_CAPTCHA) # 驗(yàn)證碼最長(zhǎng)4字符; 我全部固定為4,可以不固定. 如果驗(yàn)證碼長(zhǎng)度小于4,用'_'補(bǔ)齊
# 把彩色圖像轉(zhuǎn)為灰度圖像(色彩對(duì)識(shí)別驗(yàn)證碼沒(méi)有什么用)
# 度化是將三分量轉(zhuǎn)化成一樣數(shù)值的過(guò)程
def convert2gray(img):
if len(img.shape) > 2:
gray = np.mean(img, -1)
# 上面的轉(zhuǎn)法較快,正規(guī)轉(zhuǎn)法如下
# r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
# gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
# int gray = (int) (0.3 * r + 0.59 * g + 0.11 * b);
return gray
else:
return img
"""
cnn在圖像大小是2的倍數(shù)時(shí)性能最高, 如果你用的圖像大小不是2的倍數(shù),可以在圖像邊緣補(bǔ)無(wú)用像素。
np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,)) # 在圖像上補(bǔ)2行,下補(bǔ)3行,左補(bǔ)2行,右補(bǔ)2行
"""
char_set = number # 如果驗(yàn)證碼長(zhǎng)度小于4, '_'用來(lái)補(bǔ)齊
CHAR_SET_LEN = len(char_set)
# 文本轉(zhuǎn)向量
def text2vec(text):
text_len = len(text)
if text_len > MAX_CAPTCHA:
raise ValueError('驗(yàn)證碼最長(zhǎng)4個(gè)字符')
vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
def char2pos(c):
try:
k = ord(c)-ord('0')
except:
raise ValueError('No Map')
return k
for i, c in enumerate(text):
idx = i * CHAR_SET_LEN + char2pos(c)
vector[idx] = 1
return vector
# 向量轉(zhuǎn)回文本
def vec2text(vec):
char_pos = vec.nonzero()[0]
text = []
for i, c in enumerate(char_pos):
char_at_pos = i # c/63
char_idx = c % CHAR_SET_LEN
if char_idx < 10:
char_code = char_idx + ord('0')
elif char_idx < 36:
char_code = char_idx - 10 + ord('A')
elif char_idx < 62:
char_code = char_idx - 36 + ord('a')
elif char_idx == 62:
char_code = ord('_')
else:
raise ValueError('error')
text.append(chr(char_code))
return "".join(text)
# 生成一個(gè)訓(xùn)練batch
def get_next_batch(batch_size=128):
batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])
# 有時(shí)生成圖像大小不是(60, 160, 3)
def wrap_gen_captcha_text_and_image():
while True:
text, image = gen_captcha_text_and_image_new()
if image.shape == image_shape:
return text, image
for i in range(batch_size):
text, image = wrap_gen_captcha_text_and_image()
image = convert2gray(image)
batch_x[i, :] = image.flatten() / 255 # (image.flatten()-128)/128 mean為0
batch_y[i, :] = text2vec(text)
return batch_x, batch_y
####################################################################
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32) # dropout
# 定義CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
# w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
# w_c2_alpha = np.sqrt(2.0/(3*3*32))
# w_c3_alpha = np.sqrt(2.0/(3*3*64))
# w_d1_alpha = np.sqrt(2.0/(8*32*64))
# out_alpha = np.sqrt(2.0/1024)
# 定義三層的卷積神經(jīng)網(wǎng)絡(luò)
# 定義第一層的卷積神經(jīng)網(wǎng)絡(luò)
# 定義第一層權(quán)重
w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
# 定義第一層的偏置
b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
# 定義第一層的激勵(lì)函數(shù)
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
# conv1 為輸入 ksize 表示使用2*2池化,即將2*2的色塊轉(zhuǎn)化成1*1的色塊
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# dropout防止過(guò)擬合。
conv1 = tf.nn.dropout(conv1, keep_prob)
# 定義第二層的卷積神經(jīng)網(wǎng)絡(luò)
w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_prob)
# 定義第三層的卷積神經(jīng)網(wǎng)絡(luò)
w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, keep_prob)
# Fully connected layer
# 隨機(jī)生成權(quán)重
w_d = tf.Variable(w_alpha * tf.random_normal([1536, 1024]))
# 隨機(jī)生成偏置
b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
dense = tf.nn.dropout(dense, keep_prob)
w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
out = tf.add(tf.matmul(dense, w_out), b_out)
# out = tf.nn.softmax(out)
return out
# 訓(xùn)練
def train_crack_captcha_cnn():
# X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
# Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
# keep_prob = tf.placeholder(tf.float32) # dropout
output = crack_captcha_cnn()
# loss
# loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(output, Y))
# 最后一層用來(lái)分類(lèi)的softmax和sigmoid有什么不同?
# optimizer 為了加快訓(xùn)練 learning_rate應(yīng)該開(kāi)始大,然后慢慢衰
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 0
while True:
batch_x, batch_y = get_next_batch(64)
_, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
print(step, loss_)
# 每100 step計(jì)算一次準(zhǔn)確率
if step % 100 == 0:
batch_x_test, batch_y_test = get_next_batch(100)
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
print(step, acc)
# 如果準(zhǔn)確率大于50%,保存模型,完成訓(xùn)練
if acc > 0.99:
saver.save(sess, "./crack_capcha.model", global_step=step)
break
step += 1
## 訓(xùn)練(如果要訓(xùn)練則去掉下面一行的注釋)
train_crack_captcha_cnn()
def crack_captcha():
output = crack_captcha_cnn()
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('.'))
predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
count = 0
# 因?yàn)闇y(cè)試集共40個(gè)...寫(xiě)的很草率
for i in range(40):
text, image = get_test_captcha_text_and_image(i)
image = convert2gray(image)
captcha_image = image.flatten() / 255
text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
predict_text = text_list[0].tolist()
predict_text = str(predict_text)
predict_text = predict_text.replace("[", "").replace("]", "").replace(",", "").replace(" ","")
if text == predict_text:
count += 1
check_result = ",預(yù)測(cè)結(jié)果正確"
else:
check_result = ",預(yù)測(cè)結(jié)果不正確"
print("正確: {} 預(yù)測(cè): {}".format(text, predict_text) + check_result)
print("正確率:" + str(count) + "/40")
# 測(cè)試(如果要測(cè)試則去掉下面一行的注釋)
# crack_captcha()
gen_check_code.py(得到訓(xùn)練集輸入,需要注意修改root_dir為訓(xùn)練集的輸入文件夾,下同)
from captcha.image import ImageCaptcha # pip install captcha
import numpy as np
from PIL import Image
import random
# import matplotlib.pyplot as plt
import os
from random import choice
# 驗(yàn)證碼中的字符, 就不用漢字了
number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
# alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u',
# 'v', 'w', 'x', 'y', 'z']
# ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U',
# 'V', 'W', 'X', 'Y', 'Z']
root_dir = "d:\\train"
# 驗(yàn)證碼一般都無(wú)視大小寫(xiě);驗(yàn)證碼長(zhǎng)度4個(gè)字符
def random_captcha_text(char_set=number, captcha_size=4):
captcha_text = []
for i in range(captcha_size):
c = random.choice(char_set)
captcha_text.append(c)
return captcha_text
# 生成字符對(duì)應(yīng)的驗(yàn)證碼
def gen_captcha_text_and_image():
image = ImageCaptcha()
captcha_text = random_captcha_text()
captcha_text = ''.join(captcha_text)
captcha = image.generate(captcha_text)
# image.write(captcha_text, captcha_text + '.jpg') # 寫(xiě)到文件
captcha_image = Image.open(captcha)
captcha_image = np.array(captcha_image)
return captcha_text, captcha_image
def gen_list():
img_list = []
for parent, dirnames, filenames in os.walk(root_dir): # 三個(gè)參數(shù):分別返回1.父目錄 2.所有文件夾名字(不含路徑) 3.所有文件名字
for filename in filenames: # 輸出文件信息
img_list.append(filename.replace(".gif",""))
# print("parent is:" + parent)
# print("filename is:" + filename)
# print("the full name of the file is:" + os.path.join(parent, filename)) # 輸出文件路徑信息
return img_list
img_list = gen_list()
def gen_captcha_text_and_image_new():
img = choice(img_list)
captcha_image = Image.open(root_dir + "\\" + img + ".gif")
captcha_image = np.array(captcha_image)
return img, captcha_image
# if __name__ == '__main__':
# # 測(cè)試
# # text, image = gen_captcha_text_and_image()
# #
# # f = plt.figure()
# # ax = f.add_subplot(111)
# # ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes)
# # plt.imshow(image)
# # plt.show()
# #
#
# text, image = gen_captcha_text_and_image_new()
#
# f = plt.figure()
# ax = f.add_subplot(111)
# ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes)
# plt.imshow(image)
# plt.show()
test_check_code.py(得到測(cè)試集輸入)
from captcha.image import ImageCaptcha # pip install captcha
import numpy as np
from PIL import Image
import random
import matplotlib.pyplot as plt
import os
from random import choice
root_dir = "d:\\test"
img_list = []
def gen_list():
for parent, dirnames, filenames in os.walk(root_dir): # 三個(gè)參數(shù):分別返回1.父目錄 2.所有文件夾名字(不含路徑) 3.所有文件名字
for filename in filenames: # 輸出文件信息
img_list.append(filename.replace(".gif",""))
# print("parent is:" + parent)
# print("filename is:" + filename)
# print("the full name of the file is:" + os.path.join(parent, filename)) # 輸出文件路徑信息
return img_list
img_list = gen_list()
def get_test_captcha_text_and_image(i=None):
img = img_list[i]
captcha_image = Image.open(root_dir + "\\" + img + ".gif")
captcha_image = np.array(captcha_image)
return img, captcha_image
4.效果
在測(cè)試集上的識(shí)別率

5.相關(guān)文件下載
訓(xùn)練集以及測(cè)試集 下載
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
一文詳解CNN 解決 Flowers 圖像分類(lèi)任務(wù)
這篇文章主要為大家介紹了CNN 解決 Flowers 圖像分類(lèi)任務(wù)詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-03-03
Python爬蟲(chóng)請(qǐng)求模塊Urllib及Requests庫(kù)安裝使用教程
requests和urllib都是Python中常用的HTTP請(qǐng)求庫(kù),使用時(shí)需要根據(jù)實(shí)際情況選擇,如果要求使用簡(jiǎn)單、功能完善、性能高的HTTP請(qǐng)求庫(kù),可以選擇requests,如果需要兼容性更好、功能更加靈活的HTTP請(qǐng)求庫(kù),可以選擇urllib2023-11-11
基于Python實(shí)現(xiàn)簡(jiǎn)易文檔格式轉(zhuǎn)換器
這篇文章主要介紹了基于Python和PyQT5實(shí)現(xiàn)簡(jiǎn)易的文檔格式轉(zhuǎn)換器,支持.txt/.xlsx/.csv格式的轉(zhuǎn)換。感興趣的小伙伴可以跟隨小編一起學(xué)習(xí)一下2021-12-12
python機(jī)器學(xué)習(xí)deepchecks庫(kù)訓(xùn)練檢查模型特點(diǎn)探索
這篇文章主要介紹了python機(jī)器學(xué)習(xí)deepchecks庫(kù)的訓(xùn)練檢查模型特點(diǎn)實(shí)例探索,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2024-01-01
解決Python報(bào)錯(cuò)No module named Crypto問(wèn)題
這篇文章主要介紹了解決Python報(bào)錯(cuò)No module named“Crypto”問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2024-06-06
python實(shí)現(xiàn)簡(jiǎn)易聊天室(Linux終端)
這篇文章主要為大家詳細(xì)介紹了Linux終端上python實(shí)現(xiàn)簡(jiǎn)易聊天室功能,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2021-07-07

