Python實(shí)現(xiàn)的遞歸神經(jīng)網(wǎng)絡(luò)簡(jiǎn)單示例
本文實(shí)例講述了Python實(shí)現(xiàn)的遞歸神經(jīng)網(wǎng)絡(luò)。分享給大家供大家參考,具體如下:
# Recurrent Neural Networks import copy, numpy as np np.random.seed(0) # compute sigmoid nonlinearity def sigmoid(x): output = 1/(1+np.exp(-x)) return output # convert output of sigmoid function to its derivative def sigmoid_output_to_derivative(output): return output*(1-output) # training dataset generation int2binary = {} binary_dim = 8 largest_number = pow(2,binary_dim) binary = np.unpackbits( np.array([range(largest_number)],dtype=np.uint8).T,axis=1) for i in range(largest_number): int2binary[i] = binary[i] # input variables alpha = 0.1 input_dim = 2 hidden_dim = 16 output_dim = 1 # initialize neural network weights synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1 synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1 synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1 synapse_0_update = np.zeros_like(synapse_0) synapse_1_update = np.zeros_like(synapse_1) synapse_h_update = np.zeros_like(synapse_h) # training logic for j in range(10000): # generate a simple addition problem (a + b = c) a_int = np.random.randint(largest_number/2) # int version a = int2binary[a_int] # binary encoding b_int = np.random.randint(largest_number/2) # int version b = int2binary[b_int] # binary encoding # true answer c_int = a_int + b_int c = int2binary[c_int] # where we'll store our best guess (binary encoded) d = np.zeros_like(c) overallError = 0 layer_2_deltas = list() layer_1_values = list() layer_1_values.append(np.zeros(hidden_dim)) # moving along the positions in the binary encoding for position in range(binary_dim): # generate input and output X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]]) y = np.array([[c[binary_dim - position - 1]]]).T # hidden layer (input ~+ prev_hidden) layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h)) # output layer (new binary representation) layer_2 = sigmoid(np.dot(layer_1,synapse_1)) # did we miss?... if so, by how much? layer_2_error = y - layer_2 layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2)) overallError += np.abs(layer_2_error[0]) # decode estimate so we can print(it out) d[binary_dim - position - 1] = np.round(layer_2[0][0]) # store hidden layer so we can use it in the next timestep layer_1_values.append(copy.deepcopy(layer_1)) future_layer_1_delta = np.zeros(hidden_dim) for position in range(binary_dim): X = np.array([[a[position],b[position]]]) layer_1 = layer_1_values[-position-1] prev_layer_1 = layer_1_values[-position-2] # error at output layer layer_2_delta = layer_2_deltas[-position-1] # error at hidden layer layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1) # let's update all our weights so we can try again synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta) synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta) synapse_0_update += X.T.dot(layer_1_delta) future_layer_1_delta = layer_1_delta synapse_0 += synapse_0_update * alpha synapse_1 += synapse_1_update * alpha synapse_h += synapse_h_update * alpha synapse_0_update *= 0 synapse_1_update *= 0 synapse_h_update *= 0 # print(out progress) if j % 1000 == 0: print("Error:" + str(overallError)) print("Pred:" + str(d)) print("True:" + str(c)) out = 0 for index,x in enumerate(reversed(d)): out += x*pow(2,index) print(str(a_int) + " + " + str(b_int) + " = " + str(out)) print("------------")
運(yùn)行輸出:
Error:[ 3.45638663] Pred:[0 0 0 0 0 0 0 1] True:[0 1 0 0 0 1 0 1] 9 + 60 = 1 ------------ Error:[ 3.63389116] Pred:[1 1 1 1 1 1 1 1] True:[0 0 1 1 1 1 1 1] 28 + 35 = 255 ------------ Error:[ 3.91366595] Pred:[0 1 0 0 1 0 0 0] True:[1 0 1 0 0 0 0 0] 116 + 44 = 72 ------------ Error:[ 3.72191702] Pred:[1 1 0 1 1 1 1 1] True:[0 1 0 0 1 1 0 1] 4 + 73 = 223 ------------ Error:[ 3.5852713] Pred:[0 0 0 0 1 0 0 0] True:[0 1 0 1 0 0 1 0] 71 + 11 = 8 ------------ Error:[ 2.53352328] Pred:[1 0 1 0 0 0 1 0] True:[1 1 0 0 0 0 1 0] 81 + 113 = 162 ------------ Error:[ 0.57691441] Pred:[0 1 0 1 0 0 0 1] True:[0 1 0 1 0 0 0 1] 81 + 0 = 81 ------------ Error:[ 1.42589952] Pred:[1 0 0 0 0 0 0 1] True:[1 0 0 0 0 0 0 1] 4 + 125 = 129 ------------ Error:[ 0.47477457] Pred:[0 0 1 1 1 0 0 0] True:[0 0 1 1 1 0 0 0] 39 + 17 = 56 ------------ Error:[ 0.21595037] Pred:[0 0 0 0 1 1 1 0] True:[0 0 0 0 1 1 1 0] 11 + 3 = 14 ------------
英文原文:https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/
更多關(guān)于Python相關(guān)內(nèi)容感興趣的讀者可查看本站專題:《Python數(shù)學(xué)運(yùn)算技巧總結(jié)》、《Python數(shù)據(jù)結(jié)構(gòu)與算法教程》、《Python函數(shù)使用技巧總結(jié)》、《Python字符串操作技巧匯總》、《Python入門與進(jìn)階經(jīng)典教程》及《Python文件與目錄操作技巧匯總》
希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。
- 神經(jīng)網(wǎng)絡(luò)(BP)算法Python實(shí)現(xiàn)及應(yīng)用
- Python實(shí)現(xiàn)的三層BP神經(jīng)網(wǎng)絡(luò)算法示例
- Python編程實(shí)現(xiàn)的簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)算法示例
- python構(gòu)建深度神經(jīng)網(wǎng)絡(luò)(DNN)
- Python與人工神經(jīng)網(wǎng)絡(luò):使用神經(jīng)網(wǎng)絡(luò)識(shí)別手寫圖像介紹
- TensorFlow平臺(tái)下Python實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)
- Python利用邏輯回歸模型解決MNIST手寫數(shù)字識(shí)別問題詳解
- 詳解python實(shí)現(xiàn)識(shí)別手寫MNIST數(shù)字集的程序
- python讀取二進(jìn)制mnist實(shí)例詳解
- python MNIST手寫識(shí)別數(shù)據(jù)調(diào)用API的方法
- Python tensorflow實(shí)現(xiàn)mnist手寫數(shù)字識(shí)別示例【非卷積與卷積實(shí)現(xiàn)】
- Python利用全連接神經(jīng)網(wǎng)絡(luò)求解MNIST問題詳解
相關(guān)文章
Python中使用urllib2防止302跳轉(zhuǎn)的代碼例子
這篇文章主要介紹了Python中使用urllib2防止302跳轉(zhuǎn)的代碼例子,即避免302跳轉(zhuǎn)的實(shí)現(xiàn),需要的朋友可以參考下2014-07-07python基于paramiko將文件上傳到服務(wù)器代碼實(shí)現(xiàn)
這篇文章主要介紹了python基于paramiko將文件上傳到服務(wù)器代碼實(shí)現(xiàn),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-07-07基于Python實(shí)現(xiàn)中秋佳節(jié)月餅搶購(gòu)腳本
這篇文章主要介紹了Python版中秋佳節(jié)月餅搶購(gòu)腳本,今天要用的是一個(gè)測(cè)試工具的庫(kù)Selenium,今天我們就是用它去實(shí)現(xiàn)自動(dòng)化搶購(gòu)月餅,其實(shí)就是用這個(gè)工具"模擬"人為操作瀏覽器相應(yīng)的操作,比如登陸,勾選購(gòu)物車商品,下單購(gòu)買等等操作,需要的朋友可以參考下2022-09-09python函數(shù)實(shí)例萬(wàn)花筒實(shí)現(xiàn)過(guò)程
這篇文章主要為大家介紹了python函數(shù)實(shí)例萬(wàn)花筒實(shí)現(xiàn)過(guò)程詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-06-06TensorFlow實(shí)現(xiàn)簡(jiǎn)單線性回歸
這篇文章主要為大家詳細(xì)介紹了TensorFlow實(shí)現(xiàn)簡(jiǎn)單線性回歸,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2022-03-03