欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python多進(jìn)程multiprocessing用法實(shí)例分析

 更新時(shí)間:2017年08月18日 10:13:32   作者:水·域  
這篇文章主要介紹了Python多進(jìn)程multiprocessing用法,結(jié)合實(shí)例形式分析了Python多線程的概念以及進(jìn)程的創(chuàng)建、守護(hù)進(jìn)程、終止、退出進(jìn)程、進(jìn)程間消息傳遞等相關(guān)操作技巧,需要的朋友可以參考下

本文實(shí)例講述了Python多進(jìn)程multiprocessing用法。分享給大家供大家參考,具體如下:

mutilprocess簡(jiǎn)介

像線程一樣管理進(jìn)程,這個(gè)是mutilprocess的核心,他與threading很是相像,對(duì)多核CPU的利用率會(huì)比threading好的多。

簡(jiǎn)單的創(chuàng)建進(jìn)程:

import multiprocessing
def worker(num):
  """thread worker function"""
  print 'Worker:', num
  return
if __name__ == '__main__':
  jobs = []
  for i in range(5):
    p = multiprocessing.Process(target=worker, args=(i,))
    jobs.append(p)
    p.start()

確定當(dāng)前的進(jìn)程,即是給進(jìn)程命名,方便標(biāo)識(shí)區(qū)分,跟蹤

import multiprocessing
import time
def worker():
  name = multiprocessing.current_process().name
  print name, 'Starting'
  time.sleep(2)
  print name, 'Exiting'
def my_service():
  name = multiprocessing.current_process().name
  print name, 'Starting'
  time.sleep(3)
  print name, 'Exiting'
if __name__ == '__main__':
  service = multiprocessing.Process(name='my_service',
                   target=my_service)
  worker_1 = multiprocessing.Process(name='worker 1',
                    target=worker)
  worker_2 = multiprocessing.Process(target=worker) # default name
  worker_1.start()
  worker_2.start()
  service.start()

守護(hù)進(jìn)程就是不阻擋主程序退出,自己干自己的 mutilprocess.setDaemon(True)就這句等待守護(hù)進(jìn)程退出,要加上join,join可以傳入浮點(diǎn)數(shù)值,等待n久就不等了

守護(hù)進(jìn)程:

import multiprocessing
import time
import sys
def daemon():
  name = multiprocessing.current_process().name
  print 'Starting:', name
  time.sleep(2)
  print 'Exiting :', name
def non_daemon():
  name = multiprocessing.current_process().name
  print 'Starting:', name
  print 'Exiting :', name
if __name__ == '__main__':
  d = multiprocessing.Process(name='daemon',
                target=daemon)
  d.daemon = True
  n = multiprocessing.Process(name='non-daemon',
                target=non_daemon)
  n.daemon = False
  d.start()
  n.start()
  d.join(1)
  print 'd.is_alive()', d.is_alive()
  n.join()

最好使用 poison pill,強(qiáng)制的使用terminate()注意 terminate之后要join,使其可以更新狀態(tài)

終止進(jìn)程:

import multiprocessing
import time
def slow_worker():
  print 'Starting worker'
  time.sleep(0.1)
  print 'Finished worker'
if __name__ == '__main__':
  p = multiprocessing.Process(target=slow_worker)
  print 'BEFORE:', p, p.is_alive()
  p.start()
  print 'DURING:', p, p.is_alive()
  p.terminate()
  print 'TERMINATED:', p, p.is_alive()
  p.join()
  print 'JOINED:', p, p.is_alive()

①. == 0 未生成任何錯(cuò)誤 
②. 0 進(jìn)程有一個(gè)錯(cuò)誤,并以該錯(cuò)誤碼退出
③. < 0 進(jìn)程由一個(gè)-1 * exitcode信號(hào)結(jié)束

進(jìn)程的退出狀態(tài):

import multiprocessing
import sys
import time
def exit_error():
  sys.exit(1)
def exit_ok():
  return
def return_value():
  return 1
def raises():
  raise RuntimeError('There was an error!')
def terminated():
  time.sleep(3)
if __name__ == '__main__':
  jobs = []
  for f in [exit_error, exit_ok, return_value, raises, terminated]:
    print 'Starting process for', f.func_name
    j = multiprocessing.Process(target=f, name=f.func_name)
    jobs.append(j)
    j.start()
  jobs[-1].terminate()
  for j in jobs:
    j.join()
    print '%15s.exitcode = %s' % (j.name, j.exitcode)

方便的調(diào)試,可以用logging

日志:

import multiprocessing
import logging
import sys
def worker():
  print 'Doing some work'
  sys.stdout.flush()
if __name__ == '__main__':
  multiprocessing.log_to_stderr()
  logger = multiprocessing.get_logger()
  logger.setLevel(logging.INFO)
  p = multiprocessing.Process(target=worker)
  p.start()
  p.join()

利用class來創(chuàng)建進(jìn)程,定制子類

派生進(jìn)程:

import multiprocessing
class Worker(multiprocessing.Process):
  def run(self):
    print 'In %s' % self.name
    return
if __name__ == '__main__':
  jobs = []
  for i in range(5):
    p = Worker()
    jobs.append(p)
    p.start()
  for j in jobs:
    j.join()

python進(jìn)程間傳遞消息:

import multiprocessing
class MyFancyClass(object):
  def __init__(self, name):
    self.name = name
  def do_something(self):
    proc_name = multiprocessing.current_process().name
    print 'Doing something fancy in %s for %s!' % \
      (proc_name, self.name)
def worker(q):
  obj = q.get()
  obj.do_something()
if __name__ == '__main__':
  queue = multiprocessing.Queue()
  p = multiprocessing.Process(target=worker, args=(queue,))
  p.start()
  queue.put(MyFancyClass('Fancy Dan'))
  # Wait for the worker to finish
  queue.close()
  queue.join_thread()
  p.join()
import multiprocessing
import time
class Consumer(multiprocessing.Process):
  def __init__(self, task_queue, result_queue):
    multiprocessing.Process.__init__(self)
    self.task_queue = task_queue
    self.result_queue = result_queue
  def run(self):
    proc_name = self.name
    while True:
      next_task = self.task_queue.get()
      if next_task is None:
        # Poison pill means shutdown
        print '%s: Exiting' % proc_name
        self.task_queue.task_done()
        break
      print '%s: %s' % (proc_name, next_task)
      answer = next_task()
      self.task_queue.task_done()
      self.result_queue.put(answer)
    return
class Task(object):
  def __init__(self, a, b):
    self.a = a
    self.b = b
  def __call__(self):
    time.sleep(0.1) # pretend to take some time to do the work
    return '%s * %s = %s' % (self.a, self.b, self.a * self.b)
  def __str__(self):
    return '%s * %s' % (self.a, self.b)
if __name__ == '__main__':
  # Establish communication queues
  tasks = multiprocessing.JoinableQueue()
  results = multiprocessing.Queue()
  # Start consumers
  num_consumers = multiprocessing.cpu_count() * 2
  print 'Creating %d consumers' % num_consumers
  consumers = [ Consumer(tasks, results)
         for i in xrange(num_consumers) ]
  for w in consumers:
    w.start()
  # Enqueue jobs
  num_jobs = 10
  for i in xrange(num_jobs):
    tasks.put(Task(i, i))
  # Add a poison pill for each consumer
  for i in xrange(num_consumers):
    tasks.put(None)
  # Wait for all of the tasks to finish
  tasks.join()
  # Start printing results
  while num_jobs:
    result = results.get()
    print 'Result:', result
    num_jobs -= 1

Event提供一種簡(jiǎn)單的方法,可以在進(jìn)程間傳遞狀態(tài)信息。事件可以切換設(shè)置和未設(shè)置狀態(tài)。通過使用一個(gè)可選的超時(shí)值,時(shí)間對(duì)象的用戶可以等待其狀態(tài)從未設(shè)置變?yōu)樵O(shè)置。

進(jìn)程間信號(hào)傳遞:

import multiprocessing
import time
def wait_for_event(e):
  """Wait for the event to be set before doing anything"""
  print 'wait_for_event: starting'
  e.wait()
  print 'wait_for_event: e.is_set()->', e.is_set()
def wait_for_event_timeout(e, t):
  """Wait t seconds and then timeout"""
  print 'wait_for_event_timeout: starting'
  e.wait(t)
  print 'wait_for_event_timeout: e.is_set()->', e.is_set()
if __name__ == '__main__':
  e = multiprocessing.Event()
  w1 = multiprocessing.Process(name='block', 
                 target=wait_for_event,
                 args=(e,))
  w1.start()
  w2 = multiprocessing.Process(name='nonblock', 
                 target=wait_for_event_timeout, 
                 args=(e, 2))
  w2.start()
  print 'main: waiting before calling Event.set()'
  time.sleep(3)
  e.set()
  print 'main: event is set'

Python多進(jìn)程,一般的情況是Queue來傳遞。

Queue:

from multiprocessing import Process, Queue
def f(q):
  q.put([42, None, 'hello'])
if __name__ == '__main__':
  q = Queue()
  p = Process(target=f, args=(q,))
  p.start()
  print q.get()  # prints "[42, None, 'hello']"
  p.join()

多線程優(yōu)先隊(duì)列Queue:

import Queue
import threading
import time
exitFlag = 0
class myThread (threading.Thread):
  def __init__(self, threadID, name, q):
    threading.Thread.__init__(self)
    self.threadID = threadID
    self.name = name
    self.q = q
  def run(self):
    print "Starting " + self.name
    process_data(self.name, self.q)
    print "Exiting " + self.name
def process_data(threadName, q):
  while not exitFlag:
    queueLock.acquire()
    if not workQueue.empty():
      data = q.get()
      queueLock.release()
      print "%s processing %s" % (threadName, data)
    else:
      queueLock.release()
    time.sleep(1)
threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1
# Create new threads
for tName in threadList:
  thread = myThread(threadID, tName, workQueue)
  thread.start()
  threads.append(thread)
  threadID += 1
# Fill the queue
queueLock.acquire()
for word in nameList:
  workQueue.put(word)
queueLock.release()
# Wait for queue to empty
while not workQueue.empty():
  pass
# Notify threads it's time to exit
exitFlag = 1
# Wait for all threads to complete
for t in threads:
  t.join()
print "Exiting Main Thread"

多進(jìn)程使用Queue通信的例子

import time
from multiprocessing import Process,Queue
MSG_QUEUE = Queue(5)
def startA(msgQueue):
  while True:
    if msgQueue.empty() > 0:
      print ('queue is empty %d' % (msgQueue.qsize()))
    else:
      msg = msgQueue.get()
      print( 'get msg %s' % (msg,))
    time.sleep(1)
def startB(msgQueue):
  while True:
    msgQueue.put('hello world')
    print( 'put hello world queue size is %d' % (msgQueue.qsize(),))
    time.sleep(3)
if __name__ == '__main__':
  processA = Process(target=startA,args=(MSG_QUEUE,))
  processB = Process(target=startB,args=(MSG_QUEUE,))
  processA.start()
  print( 'processA start..')

主進(jìn)程定義了一個(gè)Queue類型的變量,并作為Process的args參數(shù)傳給子進(jìn)程processA和processB,兩個(gè)進(jìn)程一個(gè)向隊(duì)列中寫數(shù)據(jù),一個(gè)讀數(shù)據(jù)。

更多關(guān)于Python相關(guān)內(nèi)容感興趣的讀者可查看本站專題:《Python進(jìn)程與線程操作技巧總結(jié)》、《Python Socket編程技巧總結(jié)》、《Python數(shù)據(jù)結(jié)構(gòu)與算法教程》、《Python函數(shù)使用技巧總結(jié)》、《Python字符串操作技巧匯總》、《Python入門與進(jìn)階經(jīng)典教程》及《Python文件與目錄操作技巧匯總

希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。

相關(guān)文章

  • 詳解Django的MVT設(shè)計(jì)模式

    詳解Django的MVT設(shè)計(jì)模式

    本章我們將介紹下經(jīng)典的軟件開發(fā)所遵循的MVC (Model-View-Controller, 模型-視圖-控制器) 設(shè)計(jì)模式以及Django的MVT設(shè)計(jì)模式(Model-View-Template)是如何遵循這種設(shè)計(jì)理念的。
    2021-04-04
  • Python實(shí)現(xiàn)簡(jiǎn)單的

    Python實(shí)現(xiàn)簡(jiǎn)單的"導(dǎo)彈" 自動(dòng)追蹤原理解析

    這篇文章主要介紹了Python實(shí)現(xiàn)簡(jiǎn)單的"導(dǎo)彈" 自動(dòng)追蹤原理解析,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下
    2021-03-03
  • Python用?matplotlib?繪制柱狀圖

    Python用?matplotlib?繪制柱狀圖

    這篇文章主要介紹了Python如何用?matplotlib?繪制柱狀圖,文章對(duì)matplotlib模塊中詳細(xì)學(xué)習(xí)繪制各種柱狀圖標(biāo)相關(guān)屬性和方法,在遇到需要直觀展示離散數(shù)據(jù)點(diǎn)的差異時(shí),我們可以使用bar()或者barh()繪制美觀的圖表。具有一定的參考價(jià)值,需要的朋友可以參考一下
    2021-12-12
  • 通過實(shí)例解析python創(chuàng)建進(jìn)程常用方法

    通過實(shí)例解析python創(chuàng)建進(jìn)程常用方法

    這篇文章主要介紹了通過實(shí)例解析python創(chuàng)建進(jìn)程常用方法,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下
    2020-06-06
  • Scrapy中詭異xpath的匹配內(nèi)容失效問題及解決

    Scrapy中詭異xpath的匹配內(nèi)容失效問題及解決

    這篇文章主要介紹了Scrapy中詭異xpath的匹配內(nèi)容失效問題及解決方案,具有很好的價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2022-12-12
  • Matplotlib中rcParams使用方法

    Matplotlib中rcParams使用方法

    這篇文章主要介紹了Matplotlib中rcParams使用方法,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2021-01-01
  • 詳解python中的裝飾器

    詳解python中的裝飾器

    裝飾器是在不改變函數(shù)(當(dāng)然還有其他的)的代碼和調(diào)用方式的前提下,為函數(shù)增加新的功能,這篇文章給大家詳細(xì)介紹了python中的裝飾器,感興趣的朋友一起看看吧
    2018-07-07
  • python實(shí)現(xiàn)計(jì)算器小功能

    python實(shí)現(xiàn)計(jì)算器小功能

    這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)計(jì)算器小功能,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2022-01-01
  • python tensorflow基于cnn實(shí)現(xiàn)手寫數(shù)字識(shí)別

    python tensorflow基于cnn實(shí)現(xiàn)手寫數(shù)字識(shí)別

    這篇文章主要為大家詳細(xì)介紹了python tensorflow基于cnn實(shí)現(xiàn)手寫數(shù)字識(shí)別,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2018-01-01
  • python爬蟲之你好,李煥英電影票房數(shù)據(jù)分析

    python爬蟲之你好,李煥英電影票房數(shù)據(jù)分析

    這篇文章主要介紹了python爬蟲之你好,李煥英電影票房數(shù)據(jù)分析,文中有非常詳細(xì)的代碼示例,對(duì)正在學(xué)習(xí)python爬蟲的小伙伴們有一定的幫助,需要的朋友可以參考下
    2021-04-04

最新評(píng)論