Python標準庫之itertools庫的使用方法
前言
因為最近事情不是很多,想寫一些技術(shù)文章分享給大家,同時也對自己一段時間來碎片化接受的知識進行一下梳理,所謂寫清楚才能說清楚,說清楚才能想清楚,就是這個道理了。
很多人都致力于把Python代碼寫得更Pythonic,一來更符合規(guī)范且容易閱讀,二來一般Pythonic的代碼在執(zhí)行上也更有效率。今天就先給大家介紹一下Python的系統(tǒng)庫itertools。下面話不多說了,來一起看看詳細的介紹吧。
itertools庫
迭代器(生成器)在Python中是一種很常用也很好用的數(shù)據(jù)結(jié)構(gòu),比起列表(list)來說,迭代器最大的優(yōu)勢就是延遲計算,按需使用,從而提高開發(fā)體驗和運行效率,以至于在Python 3中map,filter等操作返回的不再是列表而是迭代器。
話雖這么說但大家平時用到的迭代器大概只有range了,而通過iter函數(shù)把列表對象轉(zhuǎn)化為迭代器對象又有點多此一舉,這時候我們今天的主角itertools就該上場了。
使用itertools
itertools中的函數(shù)大多是返回各種迭代器對象,其中很多函數(shù)的作用我們平時要寫很多代碼才能達到,而在運行效率上反而更低,畢竟人家是系統(tǒng)庫。
itertools.accumulate
簡單來說就是累加。
>>> import itertools >>> x = itertools.accumulate(range(10)) >>> print(list(x)) [0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
itertools.chain
連接多個列表或者迭代器。
>>> x = itertools.chain(range(3), range(4), [3,2,1]) >>> print(list(x)) [0, 1, 2, 0, 1, 2, 3, 3, 2, 1]
itertools.combinations
求列表或生成器中指定數(shù)目的元素不重復(fù)的所有組合
>>> x = itertools.combinations(range(4), 3) >>> print(list(x)) [(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)]
itertools.combinations_with_replacement
允許重復(fù)元素的組合
>>> x = itertools.combinations_with_replacement('ABC', 2) >>> print(list(x)) [('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'B'), ('B', 'C'), ('C', 'C')]
itertools.compress
按照真值表篩選元素
>>> x = itertools.compress(range(5), (True, False, True, True, False)) >>> print(list(x)) [0, 2, 3]
itertools.count
就是一個計數(shù)器,可以指定起始位置和步長
>>> x = itertools.count(start=20, step=-1) >>> print(list(itertools.islice(x, 0, 10, 1))) [20, 19, 18, 17, 16, 15, 14, 13, 12, 11]
itertools.cycle
循環(huán)指定的列表和迭代器
>>> x = itertools.cycle('ABC') >>> print(list(itertools.islice(x, 0, 10, 1))) ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C', 'A']
itertools.dropwhile
按照真值函數(shù)丟棄掉列表和迭代器前面的元素
>>> x = itertools.dropwhile(lambda e: e < 5, range(10)) >>> print(list(x)) [5, 6, 7, 8, 9]
itertools.filterfalse
保留對應(yīng)真值為False的元素
>>> x = itertools.filterfalse(lambda e: e < 5, (1, 5, 3, 6, 9, 4)) >>> print(list(x)) [5, 6, 9]
itertools.groupby
按照分組函數(shù)的值對元素進行分組
>>> x = itertools.groupby(range(10), lambda x: x < 5 or x > 8) >>> for condition, numbers in x: ... print(condition, list(numbers)) True [0, 1, 2, 3, 4] False [5, 6, 7, 8] True [9]
itertools.islice
上文使用過的函數(shù),對迭代器進行切片
>>> x = itertools.islice(range(10), 0, 9, 2) >>> print(list(x)) [0, 2, 4, 6, 8]
itertools.permutations
產(chǎn)生指定數(shù)目的元素的所有排列(順序有關(guān))
>>> x = itertools.permutations(range(4), 3) >>> print(list(x)) [(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2), (1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2), (2, 0, 1), (2, 0, 3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1)]
itertools.product
產(chǎn)生多個列表和迭代器的(積)
>>> x = itertools.product('ABC', range(3)) >>> >>> print(list(x)) [('A', 0), ('A', 1), ('A', 2), ('B', 0), ('B', 1), ('B', 2), ('C', 0), ('C', 1), ('C', 2)]
itertools.repeat
簡單的生成一個擁有指定數(shù)目元素的迭代器
>>> x = itertools.repeat(0, 5) >>> print(list(x)) [0, 0, 0, 0, 0]
itertools.starmap
類似map
>>> x = itertools.starmap(str.islower, 'aBCDefGhI') >>> print(list(x)) [True, False, False, False, True, True, False, True, False]
itertools.takewhile
與dropwhile相反,保留元素直至真值函數(shù)值為假。
>>> x = itertools.takewhile(lambda e: e < 5, range(10)) >>> print(list(x)) [0, 1, 2, 3, 4]
itertools.tee
這個函數(shù)我也不是很懂,似乎是生成指定數(shù)目的迭代器
>>> x = itertools.tee(range(10), 2) >>> for letters in x: ... print(list(letters)) ... [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
itertools.zip_longest
類似于zip,不過已較長的列表和迭代器的長度為準
>>> x = itertools.zip_longest(range(3), range(5)) >>> y = zip(range(3), range(5)) >>> print(list(x)) [(0, 0), (1, 1), (2, 2), (None, 3), (None, 4)] >>> print(list(y)) [(0, 0), (1, 1), (2, 2)]
結(jié)語
大概就總結(jié)到這里,不過老實說Python的各種語言特性和庫還是要多用才能熟練,最終達到隨手拈來的程度,裝逼的說就是由術(shù)入道。
總結(jié)
以上就是這篇文章的全部內(nèi)容了,希望本文的內(nèi)容對大家的學(xué)習(xí)或者工作能帶來一定的幫助,如果有疑問大家可以留言交流,謝謝大家對腳本之家的支持。
相關(guān)文章
pycharm打包py項目為.exe可執(zhí)行文件的兩種方式
本文主要介紹了pycharm打包py項目為.exe可執(zhí)行文件的兩種方式,文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2023-01-01tensorflow 利用expand_dims和squeeze擴展和壓縮tensor維度方式
今天小編就為大家分享一篇tensorflow 利用expand_dims和squeeze擴展和壓縮tensor維度方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-02-02Python如何利用Har文件進行遍歷指定字典替換提交的數(shù)據(jù)詳解
這篇文章主要給大家介紹了關(guān)于Python如何利用Har文件進行遍歷指定字典替換提交的數(shù)據(jù)的相關(guān)資料,文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-11-11