Python實(shí)現(xiàn)的人工神經(jīng)網(wǎng)絡(luò)算法示例【基于反向傳播算法】
本文實(shí)例講述了Python實(shí)現(xiàn)的人工神經(jīng)網(wǎng)絡(luò)算法。分享給大家供大家參考,具體如下:
注意:本程序使用Python3編寫(xiě),額外需要安裝numpy工具包用于矩陣運(yùn)算,未測(cè)試python2是否可以運(yùn)行。
本程序?qū)崿F(xiàn)了《機(jī)器學(xué)習(xí)》書(shū)中所述的反向傳播算法訓(xùn)練人工神經(jīng)網(wǎng)絡(luò),理論部分請(qǐng)參考我的讀書(shū)筆記。
在本程序中,目標(biāo)函數(shù)是由一個(gè)輸入x和兩個(gè)輸出y組成,
x是在范圍【-3.14, 3.14】之間隨機(jī)生成的實(shí)數(shù),而兩個(gè)y值分別對(duì)應(yīng) y1 = sin(x),y2 = 1。
隨機(jī)生成一萬(wàn)份訓(xùn)練樣例,經(jīng)過(guò)網(wǎng)絡(luò)的學(xué)習(xí)訓(xùn)練后,再用隨機(jī)生成的五份測(cè)試數(shù)據(jù)驗(yàn)證訓(xùn)練結(jié)果。
調(diào)節(jié)算法的學(xué)習(xí)速率,以及隱藏層個(gè)數(shù)、隱藏層大小,訓(xùn)練新的網(wǎng)絡(luò),可以觀察到參數(shù)對(duì)于學(xué)習(xí)結(jié)果的影響。
算法代碼如下:
#!usr/bin/env python3 # -*- coding:utf-8 -*- import numpy as np import math # definition of sigmoid funtion # numpy.exp work for arrays. def sigmoid(x): return 1 / (1 + np.exp(-x)) # definition of sigmoid derivative funtion # input must be sigmoid function's result def sigmoid_output_to_derivative(result): return result*(1-result) # init training set def getTrainingSet(nameOfSet): setDict = { "sin": getSinSet(), } return setDict[nameOfSet] def getSinSet(): x = 6.2 * np.random.rand(1) - 3.14 x = x.reshape(1,1) # y = np.array([5 *x]).reshape(1,1) # y = np.array([math.sin(x)]).reshape(1,1) y = np.array([math.sin(x),1]).reshape(1,2) return x, y def getW(synapse, delta): resultList = [] # 遍歷隱藏層每個(gè)隱藏單元對(duì)每個(gè)輸出的權(quán)值,比如8個(gè)隱藏單元,每個(gè)隱藏單元對(duì)兩個(gè)輸出各有2個(gè)權(quán)值 for i in range(synapse.shape[0]): resultList.append( (synapse[i,:] * delta).sum() ) resultArr = np.array(resultList).reshape(1, synapse.shape[0]) return resultArr def getT(delta, layer): result = np.dot(layer.T, delta) return result def backPropagation(trainingExamples, etah, input_dim, output_dim, hidden_dim, hidden_num): # 可行條件 if hidden_num < 1: print("隱藏層數(shù)不得小于1") return # 初始化網(wǎng)絡(luò)權(quán)重矩陣,這個(gè)是核心 synapseList = [] # 輸入層與隱含層1 synapseList.append(2*np.random.random((input_dim,hidden_dim)) - 1) # 隱含層1與隱含層2, 2->3,,,,,,n-1->n for i in range(hidden_num-1): synapseList.append(2*np.random.random((hidden_dim,hidden_dim)) - 1) # 隱含層n與輸出層 synapseList.append(2*np.random.random((hidden_dim,output_dim)) - 1) iCount = 0 lastErrorMax = 99999 # while True: for i in range(10000): errorMax = 0 for x, y in trainingExamples: iCount += 1 layerList = [] # 正向傳播 layerList.append( sigmoid(np.dot(x,synapseList[0])) ) for j in range(hidden_num): layerList.append( sigmoid(np.dot(layerList[-1],synapseList[j+1])) ) # 對(duì)于網(wǎng)絡(luò)中的每個(gè)輸出單元k,計(jì)算它的誤差項(xiàng) deltaList = [] layerOutputError = y - layerList[-1] # 收斂條件 errorMax = layerOutputError.sum() if layerOutputError.sum() > errorMax else errorMax deltaK = sigmoid_output_to_derivative(layerList[-1]) * layerOutputError deltaList.append(deltaK) iLength = len(synapseList) for j in range(hidden_num): w = getW(synapseList[iLength - 1 - j], deltaList[j]) delta = sigmoid_output_to_derivative(layerList[iLength - 2 - j]) * w deltaList.append(delta) # 更新每個(gè)網(wǎng)絡(luò)權(quán)值w(ji) for j in range(len(synapseList)-1, 0, -1): t = getT(deltaList[iLength - 1 -j], layerList[j-1]) synapseList[j] = synapseList[j] + etah * t t = getT(deltaList[-1], x) synapseList[0] = synapseList[0] + etah * t print("最大輸出誤差:") print(errorMax) if abs(lastErrorMax - errorMax) < 0.0001: print("收斂了") print("####################") break lastErrorMax = errorMax # 測(cè)試訓(xùn)練好的網(wǎng)絡(luò) for i in range(5): xTest, yReal = getSinSet() layerTmp = sigmoid(np.dot(xTest,synapseList[0])) for j in range(1, len(synapseList), 1): layerTmp = sigmoid(np.dot(layerTmp,synapseList[j])) yTest = layerTmp print("x:") print(xTest) print("實(shí)際的y:") print(yReal) print("神經(jīng)元網(wǎng)絡(luò)輸出的y:") print(yTest) print("最終輸出誤差:") print(np.abs(yReal - yTest)) print("#####################") print("迭代次數(shù):") print(iCount) if __name__ == '__main__': import datetime tStart = datetime.datetime.now() # 使用什么樣的訓(xùn)練樣例 nameOfSet = "sin" x, y = getTrainingSet(nameOfSet) # setting of parameters # 這里設(shè)置了學(xué)習(xí)速率。 etah = 0.01 # 隱藏層數(shù) hidden_num = 2 # 網(wǎng)絡(luò)輸入層的大小 input_dim = x.shape[1] # 隱含層的大小 hidden_dim = 100 # 輸出層的大小 output_dim = y.shape[1] # 構(gòu)建訓(xùn)練樣例 trainingExamples = [] for i in range(10000): x, y = getTrainingSet(nameOfSet) trainingExamples.append((x, y)) # 開(kāi)始用反向傳播算法訓(xùn)練網(wǎng)絡(luò) backPropagation(trainingExamples, etah, input_dim, output_dim, hidden_dim, hidden_num) tEnd = datetime.datetime.now() print("time cost:") print(tEnd - tStart)
更多關(guān)于Python相關(guān)內(nèi)容感興趣的讀者可查看本站專(zhuān)題:《Python數(shù)據(jù)結(jié)構(gòu)與算法教程》、《Python加密解密算法與技巧總結(jié)》、《Python編碼操作技巧總結(jié)》、《Python函數(shù)使用技巧總結(jié)》、《Python字符串操作技巧匯總》及《Python入門(mén)與進(jìn)階經(jīng)典教程》
希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。
相關(guān)文章
Python爬取肯德基官網(wǎng)ajax的post請(qǐng)求實(shí)現(xiàn)過(guò)程
這篇文章主要介紹了Python爬取肯德基官網(wǎng)ajax的post請(qǐng)求實(shí)現(xiàn)過(guò)程,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家學(xué)有所得,多多進(jìn)步2021-10-10淺談pytorch和Numpy的區(qū)別以及相互轉(zhuǎn)換方法
今天小編就為大家分享一篇淺談pytorch和Numpy的區(qū)別以及相互轉(zhuǎn)換方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2018-07-07利用Python中的mock庫(kù)對(duì)Python代碼進(jìn)行模擬測(cè)試
這篇文章主要介紹了利用Python中的mock庫(kù)對(duì)Python代碼進(jìn)行模擬測(cè)試,mock庫(kù)自從Python3.3依賴(lài)成為了Python的內(nèi)置庫(kù),本文也等于介紹了該庫(kù)的用法,需要的朋友可以參考下2015-04-04python協(xié)程與?asyncio?庫(kù)詳情
這篇文章主要介紹了python協(xié)程與?asyncio?庫(kù)詳情,文章基于python展開(kāi)詳細(xì)內(nèi)容,具有一定的參考價(jià)值。需要的小伙伴可以參考一下2022-05-05tensorflow 限制顯存大小的實(shí)現(xiàn)
今天小編就為大家分享一篇tensorflow 限制顯存大小的實(shí)現(xiàn),具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-02-02