Python科學(xué)畫圖代碼分享
Python畫圖主要用到matplotlib這個(gè)庫(kù)。Matplotlib 是一個(gè) Python 的 2D繪圖庫(kù),它以各種硬拷貝格式和跨平臺(tái)的交互式環(huán)境生成出版質(zhì)量級(jí)別的圖形。
這里有一本電子書供大家參考:《Python圖表繪制:matplotlib繪圖庫(kù)入門》
具體來(lái)說(shuō)是pylab和pyplot這兩個(gè)子庫(kù)。這兩個(gè)庫(kù)可以滿足基本的畫圖需求,而條形圖,散點(diǎn)圖等特殊圖,下面再單獨(dú)具體介紹。
首先給出pylab神器鎮(zhèn)文:pylab.rcParams.update(params)。這個(gè)函數(shù)幾乎可以調(diào)節(jié)圖的一切屬性,包括但不限于:坐標(biāo)范圍,axes標(biāo)簽字號(hào)大小,xtick,ytick標(biāo)簽字號(hào),圖線寬,legend字號(hào)等。
具體參數(shù)參看官方文檔:http://matplotlib.org/users/customizing.html
首先給出一個(gè)Python3畫圖的例子。
import matplotlib.pyplot as plt import matplotlib.pylab as pylab import scipy.io import numpy as np params={ 'axes.labelsize': '35', 'xtick.labelsize':'27', 'ytick.labelsize':'27', 'lines.linewidth':2 , 'legend.fontsize': '27', 'figure.figsize' : '12, 9' # set figure size } pylab.rcParams.update(params) #set figure parameter #line_styles=['ro-','b^-','gs-','ro--','b^--','gs--'] #set line style #We give the coordinate date directly to give an example. x1 = [-20,-15,-10,-5,0,0,5,10,15,20] y1 = [0,0.04,0.1,0.21,0.39,0.74,0.78,0.80,0.82,0.85] y2 = [0,0.014,0.03,0.16,0.37,0.78,0.81,0.83,0.86,0.92] y3 = [0,0.001,0.02,0.14,0.34,0.77,0.82,0.85,0.90,0.96] y4 = [0,0,0.02,0.12,0.32,0.77,0.83,0.87,0.93,0.98] y5 = [0,0,0.02,0.11,0.32,0.77,0.82,0.90,0.95,1] plt.plot(x1,y1,'bo-',label='m=2, p=10%',markersize=20) # in 'bo-', b is blue, o is O marker, - is solid line and so on plt.plot(x1,y2,'gv-',label='m=4, p=10%',markersize=20) plt.plot(x1,y3,'ys-',label='m=6, p=10%',markersize=20) plt.plot(x1,y4,'ch-',label='m=8, p=10%',markersize=20) plt.plot(x1,y5,'mD-',label='m=10, p=10%',markersize=20) fig1 = plt.figure(1) axes = plt.subplot(111) #axes = plt.gca() axes.set_yticks([0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]) axes.grid(True) # add grid plt.legend(loc="lower right") #set legend location plt.ylabel('Percentage') # set ystick label plt.xlabel('Difference') # set xstck label plt.savefig('D:\\commonNeighbors_CDF_snapshots.eps',dpi = 1000,bbox_inches='tight') plt.show()
顯示效果如下:
代碼沒(méi)什么好說(shuō)的,這里只說(shuō)一下plt.subplot(111)這個(gè)函數(shù)。
plt.subplot(111)和plt.subplot(1,1,1)是等價(jià)的。意思是將區(qū)域分成1行1列,當(dāng)前畫的是第一個(gè)圖(排序由行至列)。
plt.subplot(211)意思就是將區(qū)域分成2行1列,當(dāng)前畫的是第一個(gè)圖(第一行,第一列)。以此類推,只要不超過(guò)10,逗號(hào)就可省去。
python畫條形圖。代碼如下。
import scipy.io import numpy as np import matplotlib.pylab as pylab import matplotlib.pyplot as plt import matplotlib.ticker as mtick params={ 'axes.labelsize': '35', 'xtick.labelsize':'27', 'ytick.labelsize':'27', 'lines.linewidth':2 , 'legend.fontsize': '27', 'figure.figsize' : '24, 9' } pylab.rcParams.update(params) y1 = [9.79,7.25,7.24,4.78,4.20] y2 = [5.88,4.55,4.25,3.78,3.92] y3 = [4.69,4.04,3.84,3.85,4.0] y4 = [4.45,3.96,3.82,3.80,3.79] y5 = [3.82,3.89,3.89,3.78,3.77] ind = np.arange(5) # the x locations for the groups width = 0.15 plt.bar(ind,y1,width,color = 'blue',label = 'm=2') plt.bar(ind+width,y2,width,color = 'g',label = 'm=4') # ind+width adjusts the left start location of the bar. plt.bar(ind+2*width,y3,width,color = 'c',label = 'm=6') plt.bar(ind+3*width,y4,width,color = 'r',label = 'm=8') plt.bar(ind+4*width,y5,width,color = 'm',label = 'm=10') plt.xticks(np.arange(5) + 2.5*width, ('10%','15%','20%','25%','30%')) plt.xlabel('Sample percentage') plt.ylabel('Error rate') fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' xticks = mtick.FormatStrFormatter(fmt) # Set the formatter axes = plt.gca() # get current axes axes.yaxis.set_major_formatter(xticks) # set % format to ystick. axes.grid(True) plt.legend(loc="upper right") plt.savefig('D:\\errorRate.eps', format='eps',dpi = 1000,bbox_inches='tight') plt.show()
結(jié)果如下:
畫散點(diǎn)圖,主要是scatter這個(gè)函數(shù),其他類似。
畫網(wǎng)絡(luò)圖,要用到networkx這個(gè)庫(kù),下面給出一個(gè)實(shí)例:
import networkx as nx import pylab as plt g = nx.Graph() g.add_edge(1,2,weight = 4) g.add_edge(1,3,weight = 7) g.add_edge(1,4,weight = 8) g.add_edge(1,5,weight = 3) g.add_edge(1,9,weight = 3) g.add_edge(1,6,weight = 6) g.add_edge(6,7,weight = 7) g.add_edge(6,8,weight = 7) g.add_edge(6,9,weight = 6) g.add_edge(9,10,weight = 7) g.add_edge(9,11,weight = 6) fixed_pos = {1:(1,1),2:(0.7,2.2),3:(0,1.8),4:(1.6,2.3),5:(2,0.8),6:(-0.6,-0.6),7:(-1.3,0.8), 8:(-1.5,-1), 9:(0.5,-1.5), 10:(1.7,-0.8), 11:(1.5,-2.3)} #set fixed layout location #pos=nx.spring_layout(g) # or you can use other layout set in the module nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[1,2,3,4,5], node_color = 'g',node_size = 600) nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(1,2),(1,3),(1,4),(1,5),(1,9)],edge_color='g',width = [4.0,4.0,4.0,4.0,4.0],label = [1,2,3,4,5],node_size = 600) nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[6,7,8], node_color = 'r',node_size = 600) nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(6,7),(6,8),(1,6)],width = [4.0,4.0,4.0],edge_color='r',node_size = 600) nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[9,10,11], node_color = 'b',node_size = 600) nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(6,9),(9,10),(9,11)],width = [4.0,4.0,4.0],edge_color='b',node_size = 600) plt.text(fixed_pos[1][0],fixed_pos[1][1]+0.2, s = '1',fontsize = 40) plt.text(fixed_pos[2][0],fixed_pos[2][1]+0.2, s = '2',fontsize = 40) plt.text(fixed_pos[3][0],fixed_pos[3][1]+0.2, s = '3',fontsize = 40) plt.text(fixed_pos[4][0],fixed_pos[4][1]+0.2, s = '4',fontsize = 40) plt.text(fixed_pos[5][0],fixed_pos[5][1]+0.2, s = '5',fontsize = 40) plt.text(fixed_pos[6][0],fixed_pos[6][1]+0.2, s = '6',fontsize = 40) plt.text(fixed_pos[7][0],fixed_pos[7][1]+0.2, s = '7',fontsize = 40) plt.text(fixed_pos[8][0],fixed_pos[8][1]+0.2, s = '8',fontsize = 40) plt.text(fixed_pos[9][0],fixed_pos[9][1]+0.2, s = '9',fontsize = 40) plt.text(fixed_pos[10][0],fixed_pos[10][1]+0.2, s = '10',fontsize = 40) plt.text(fixed_pos[11][0],fixed_pos[11][1]+0.2, s = '11',fontsize = 40) plt.show()
結(jié)果如下:
總結(jié)
以上就是本文關(guān)于Python科學(xué)畫圖代碼分享的全部?jī)?nèi)容,希望對(duì)大家有所幫助。感興趣的朋友可以繼續(xù)參閱本站其他相關(guān)專題,如有不足之處,歡迎留言指出。感謝朋友們對(duì)本站的支持!
相關(guān)文章
Python使用openpyxl批量處理數(shù)據(jù)
openpyxl 是一個(gè)用于處理 xlsx 格式Excel表格文件的第三方python庫(kù),其支持Excel表格絕大多數(shù)基本操作。本文給大家介紹Python使用openpyxl批量處理數(shù)據(jù)的操作方法,感興趣的朋友一起看看吧2021-06-06TensorFlow實(shí)現(xiàn)AutoEncoder自編碼器
這篇文章主要為大家詳細(xì)介紹了TensorFlow實(shí)現(xiàn)AutoEncoder自編碼器,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-03-03對(duì)python中dict和json的區(qū)別詳解
今天小編就為大家分享一篇對(duì)python中dict和json的區(qū)別詳解,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2018-12-12Python+OpenCV圖像處理—— 色彩空間轉(zhuǎn)換
這篇文章主要介紹了Python+OpenCV如何對(duì)圖片進(jìn)行色彩空間轉(zhuǎn)換,幫助大家更好的利用python處理圖片,感興趣的朋友可以了解下下2020-10-10python中創(chuàng)建一個(gè)包并引用使用的操作方法
python包在開(kāi)發(fā)中十分常見(jiàn),一般通過(guò)導(dǎo)入包含特定功能的python模塊包進(jìn)行使用。當(dāng)然,也可以自己創(chuàng)建打包模塊,然后發(fā)布,安裝使用,這篇文章主要介紹了python中如何創(chuàng)建一個(gè)包并引用使用,需要的朋友可以參考下2022-08-08詳解基于Facecognition+Opencv快速搭建人臉識(shí)別及跟蹤應(yīng)用
這篇文章主要介紹了詳解基于Facecognition+Opencv快速搭建人臉識(shí)別及跟蹤應(yīng)用,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2021-01-01淺談SciPy中的optimize.minimize實(shí)現(xiàn)受限優(yōu)化問(wèn)題
今天小編就為大家分享一篇淺談SciPy中的optimize.minimize實(shí)現(xiàn)受限優(yōu)化問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-02-02