Python實現(xiàn)簡單的語音識別系統(tǒng)
最近認識了一個做Python語音識別的朋友,聊天時候說到,未來五到十年,Python人工智能會在國內(nèi)掀起一股狂潮,對各種應(yīng)用的沖擊,不下于淘寶對實體經(jīng)濟的沖擊。在本地(江蘇某三線城市)做這一行,短期可能顯不出效果,但從長遠來看,絕對是一個高明的選擇。朋友老家山東的,畢業(yè)來這里創(chuàng)業(yè),也是十分有想法啊。
將AI課上學習的知識進行簡單的整理,可以識別簡單的0-9的單個語音?;痉椒ň褪抢脦旌瘮?shù)提取mfcc,然后計算誤差矩陣,再利用動態(tài)規(guī)劃計算累積矩陣。并且限制了匹配路徑的范圍。具體的技術(shù)網(wǎng)上很多,不再細談。
現(xiàn)有缺點就是輸入的語音長度都是1s,如果不固定長度則識別效果變差。改進思路是提取有效語音部分。但是該部分尚未完全做好,只寫了一個原形函數(shù),尚未完善。
import wave import numpy as np import matplotlib.pyplot as plt from python_speech_features import mfcc from math import cos,sin,sqrt,pi def read_file(file_name): with wave.open(file_name,'r') as file: params = file.getparams() _, _, framerate, nframes = params[:4] str_data = file.readframes(nframes) wave_data = np.fromstring(str_data, dtype = np.short) time = np.arange(0, nframes) * (1.0/framerate) return wave_data, time return index1,index2 def find_point(data): count1,count2 = 0,0 for index,val in enumerate(data): if count1 <40: count1 = count1+1 if abs(val)>0.15 else 0 index1 = index if count1==40 and count2 <5: count2 = count2+1 if abs(val)<0.001 else 0 index2 = index if count2==5:break return index1,index2 def select_valid(data): start,end = find_point(normalized(data)) print(start,end) return data[start:end] def normalized(a): maximum = max(a) minimum = min(a) return a/maximum def compute_mfcc_coff(file_prefix = ''): mfcc_feats = [] s = range(10) I = [0,3,4,8] II = [5,7,9] Input = {'':s,'I':I,'II':II,'B':s} for index,file_name in enumerate(file_prefix+'{0}.wav'.format(i) for i in Input[file_prefix]): data,time = read_file(file_name) #data = select_valid(data) #if file_prefix=='II':data = select_valid(data) mfcc_feat = mfcc(data,48000)[:75] mfcc_feats.append(mfcc_feat) t = np.array(mfcc_feats) return np.array(mfcc_feats) def create_dist(): for i,m_i in enumerate(mfcc_coff_input):#get the mfcc of input for j,m_j in enumerate(mfcc_coff):#get the mfcc of dataset #build the distortion matrix bwtween i wav and j wav N = len(mfcc_coff[0]) distortion_mat = np.array([[0]*len(m_i) for i in range(N)],dtype = np.double) for k1,mfcc1 in enumerate(m_i): for k2,mfcc2 in enumerate(m_j): distortion_mat[k1][k2] = sqrt(sum((mfcc1[1:]-mfcc2[1:])**2)) yield i,j,distortion_mat def create_Dist(): for _i,_j,dist in create_dist(): N = len(dist) Dist = np.array([[0]*N for i in range(N)],dtype = np.double) Dist[0][0] = dist[0][0] for i in range(N): for j in range(N): if i|j ==0:continue pos = [(i-1,j),(i,j-1),(i-1,j-1)] Dist[i][j] = dist[i][j] + min(Dist[k1][k2] for k1,k2 in pos if k1>-1 and k2>-1) #if _i==0 and _j==1 :print(_i,_j,'\n',Dist,len(Dist[0]),len(Dist[1])) yield _i,_j,Dist def search_path(n): comparison = np.array([[0]*10 for i in range(n)],dtype = np.double) for _i,_j,Dist in create_Dist(): N = len(Dist) cut_off = 5 row = [(d,N-1,j) for j,d in enumerate(Dist[N-1]) if abs(N-1-j)<=cut_off] col = [(d,i,N-1) for i,d in enumerate(Dist[:,N-1]) if abs(N-1-i)<=cut_off] min_d,min_i,min_j = min(row+col ) comparison[_i][_j] = min_d optimal_path_x,optimal_path_y = [min_i],[min_j] while min_i and min_j: optimal_path_x.append(min_i) optimal_path_y.append(min_j) pos = [(min_i-1,min_j),(min_i,min_j-1),(min_i-1,min_j-1)] #try: min_d,min_i,min_j = min(((Dist[int(k1)][int(k2)],k1,k2) for k1,k2 in pos\ if abs(k1-k2)<=cut_off)) if _i==_j and _i==4: plt.scatter(optimal_path_x[::-1],optimal_path_y[::-1],color = 'red') plt.show() return comparison mfcc_coff_input = [] mfcc_coff = [] def match(pre): global mfcc_coff_input global mfcc_coff mfcc_coff_input = compute_mfcc_coff(pre) compare = np.array([[0]*10 for i in range(len(mfcc_coff_input))],dtype = np.double) for prefix in ['','B']: mfcc_coff = compute_mfcc_coff(prefix) compare += search_path(len(mfcc_coff_input)) for l in compare: print([int(x) for x in l]) print(min(((val,index)for index,val in enumerate(l)))[1]) data,time = read_file('8.wav') match('I') match('II')
總結(jié)
以上就是本文關(guān)于Python實現(xiàn)簡單的語音識別系統(tǒng)的全部內(nèi)容,希望對大家有所幫助。感興趣的朋友可以繼續(xù)參閱本站:
Python用戶推薦系統(tǒng)曼哈頓算法實現(xiàn)完整代碼
Python編程使用tkinter模塊實現(xiàn)計算器軟件完整代碼示例
如有不足之處,歡迎留言指出。感謝朋友們對本站的支持!
相關(guān)文章
python實現(xiàn)模擬數(shù)字的魔術(shù)游戲
這篇文章介紹了python實現(xiàn)模擬數(shù)字的魔術(shù)游戲,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2021-12-12Django ORM多對多查詢方法(自定義第三張表&ManyToManyField)
今天小編就為大家分享一篇Django ORM多對多查詢方法(自定義第三張表&ManyToManyField),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-08-08Django自定義全局403、404、500錯誤頁面的示例代碼
這篇文章主要介紹了Django自定義全局403、404、500錯誤頁面的示例代碼,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-03-03windows下python虛擬環(huán)境virtualenv安裝和使用詳解
這篇文章主要介紹了windows下python虛擬環(huán)境virtualenv安裝和使用詳解,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2019-07-07python實現(xiàn)超時退出的三種方式總結(jié)
這篇文章主要介紹了python實現(xiàn)超時退出的三種方式總結(jié),具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2022-11-11