python實(shí)現(xiàn)隨機(jī)森林random forest的原理及方法
引言
想通過(guò)隨機(jī)森林來(lái)獲取數(shù)據(jù)的主要特征
1、理論
隨機(jī)森林是一個(gè)高度靈活的機(jī)器學(xué)習(xí)方法,擁有廣泛的應(yīng)用前景,從市場(chǎng)營(yíng)銷到醫(yī)療保健保險(xiǎn)。 既可以用來(lái)做市場(chǎng)營(yíng)銷模擬的建模,統(tǒng)計(jì)客戶來(lái)源,保留和流失。也可用來(lái)預(yù)測(cè)疾病的風(fēng)險(xiǎn)和病患者的易感性。
根據(jù)個(gè)體學(xué)習(xí)器的生成方式,目前的集成學(xué)習(xí)方法大致可分為兩大類,即個(gè)體學(xué)習(xí)器之間存在強(qiáng)依賴關(guān)系,必須串行生成的序列化方法,以及個(gè)體學(xué)習(xí)器間不存在強(qiáng)依賴關(guān)系,可同時(shí)生成的并行化方法;
前者的代表是Boosting,后者的代表是Bagging和“隨機(jī)森林”(Random
Forest)
隨機(jī)森林在以決策樹(shù)為基學(xué)習(xí)器構(gòu)建Bagging集成的基礎(chǔ)上,進(jìn)一步在決策樹(shù)的訓(xùn)練過(guò)程中引入了隨機(jī)屬性選擇(即引入隨機(jī)特征選擇)。
簡(jiǎn)單來(lái)說(shuō),隨機(jī)森林就是對(duì)決策樹(shù)的集成,但有兩點(diǎn)不同:
(2)特征選取的差異性:每個(gè)決策樹(shù)的n個(gè)分類特征是在所有特征中隨機(jī)選擇的(n是一個(gè)需要我們自己調(diào)整的參數(shù))
隨機(jī)森林,簡(jiǎn)單理解, 比如預(yù)測(cè)salary,就是構(gòu)建多個(gè)決策樹(shù)job,age,house,然后根據(jù)要預(yù)測(cè)的量的各個(gè)特征(teacher,39,suburb)分別在對(duì)應(yīng)決策樹(shù)的目標(biāo)值概率(salary<5000,salary>=5000),從而,確定預(yù)測(cè)量的發(fā)生概率(如,預(yù)測(cè)出P(salary<5000)=0.3).
隨機(jī)森林是一個(gè)可做能夠回歸和分類。 它具備處理大數(shù)據(jù)的特性,而且它有助于估計(jì)或變量是非常重要的基礎(chǔ)數(shù)據(jù)建模。
參數(shù)說(shuō)明:
最主要的兩個(gè)參數(shù)是n_estimators和max_features。
n_estimators:表示森林里樹(shù)的個(gè)數(shù)。理論上是越大越好。但是伴隨著就是計(jì)算時(shí)間的增長(zhǎng)。但是并不是取得越大就會(huì)越好,預(yù)測(cè)效果最好的將會(huì)出現(xiàn)在合理的樹(shù)個(gè)數(shù)。
max_features:隨機(jī)選擇特征集合的子集合,并用來(lái)分割節(jié)點(diǎn)。子集合的個(gè)數(shù)越少,方差就會(huì)減少的越快,但同時(shí)偏差就會(huì)增加的越快。根據(jù)較好的實(shí)踐經(jīng)驗(yàn)。如果是回歸問(wèn)題則:
max_features=n_features,如果是分類問(wèn)題則max_features=sqrt(n_features)。
如果想獲取較好的結(jié)果,必須將max_depth=None,同時(shí)min_sample_split=1。
同時(shí)還要記得進(jìn)行cross_validated(交叉驗(yàn)證),除此之外記得在random forest中,bootstrap=True。但在extra-trees中,bootstrap=False。
2、隨機(jī)森林python實(shí)現(xiàn)
2.1Demo1
實(shí)現(xiàn)隨機(jī)森林基本功能
#隨機(jī)森林 from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor import numpy as np from sklearn.datasets import load_iris iris=load_iris() #print iris#iris的4個(gè)屬性是:萼片寬度 萼片長(zhǎng)度 花瓣寬度 花瓣長(zhǎng)度 標(biāo)簽是花的種類:setosa versicolour virginica print(iris['target'].shape) rf=RandomForestRegressor()#這里使用了默認(rèn)的參數(shù)設(shè)置 rf.fit(iris.data[:150],iris.target[:150])#進(jìn)行模型的訓(xùn)練 #隨機(jī)挑選兩個(gè)預(yù)測(cè)不相同的樣本 instance=iris.data[[100,109]] print(instance) rf.predict(instance[[0]]) print('instance 0 prediction;',rf.predict(instance[[0]])) print( 'instance 1 prediction;',rf.predict(instance[[1]])) print(iris.target[100],iris.target[109])
運(yùn)行結(jié)果
(150,)
[[ 6.3 3.3 6. 2.5]
[ 7.2 3.6 6.1 2.5]]
instance 0 prediction; [ 2.]
instance 1 prediction; [ 2.]
2 2
2.2 Demo2
3種方法的比較
#random forest test from sklearn.model_selection import cross_val_score from sklearn.datasets import make_blobs from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.tree import DecisionTreeClassifier X, y = make_blobs(n_samples=10000, n_features=10, centers=100,random_state=0) clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,random_state=0) scores = cross_val_score(clf, X, y) print(scores.mean()) clf = RandomForestClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0) scores = cross_val_score(clf, X, y) print(scores.mean()) clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0) scores = cross_val_score(clf, X, y) print(scores.mean())
運(yùn)行結(jié)果:
0.979408793821
0.999607843137
0.999898989899
2.3 Demo3-實(shí)現(xiàn)特征選擇
#隨機(jī)森林2 from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor import numpy as np from sklearn.datasets import load_iris iris=load_iris() from sklearn.model_selection import cross_val_score, ShuffleSplit X = iris["data"] Y = iris["target"] names = iris["feature_names"] rf = RandomForestRegressor() scores = [] for i in range(X.shape[1]): score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2", cv=ShuffleSplit(len(X), 3, .3)) scores.append((round(np.mean(score), 3), names[i])) print(sorted(scores, reverse=True))
運(yùn)行結(jié)果:
[(0.89300000000000002, 'petal width (cm)'), (0.82099999999999995, 'petal length
(cm)'), (0.13, 'sepal length (cm)'), (-0.79100000000000004, 'sepal width (cm)')]
2.4 demo4-隨機(jī)森林
本來(lái)想利用以下代碼來(lái)構(gòu)建隨機(jī)隨機(jī)森林決策樹(shù),但是,遇到的問(wèn)題是,程序一直在運(yùn)行,無(wú)法響應(yīng),還需要調(diào)試。
#隨機(jī)森林4 #coding:utf-8 import csv from random import seed from random import randrange from math import sqrt def loadCSV(filename):#加載數(shù)據(jù),一行行的存入列表 dataSet = [] with open(filename, 'r') as file: csvReader = csv.reader(file) for line in csvReader: dataSet.append(line) return dataSet # 除了標(biāo)簽列,其他列都轉(zhuǎn)換為float類型 def column_to_float(dataSet): featLen = len(dataSet[0]) - 1 for data in dataSet: for column in range(featLen): data[column] = float(data[column].strip()) # 將數(shù)據(jù)集隨機(jī)分成N塊,方便交叉驗(yàn)證,其中一塊是測(cè)試集,其他四塊是訓(xùn)練集 def spiltDataSet(dataSet, n_folds): fold_size = int(len(dataSet) / n_folds) dataSet_copy = list(dataSet) dataSet_spilt = [] for i in range(n_folds): fold = [] while len(fold) < fold_size: # 這里不能用if,if只是在第一次判斷時(shí)起作用,while執(zhí)行循環(huán),直到條件不成立 index = randrange(len(dataSet_copy)) fold.append(dataSet_copy.pop(index)) # pop() 函數(shù)用于移除列表中的一個(gè)元素(默認(rèn)最后一個(gè)元素),并且返回該元素的值。 dataSet_spilt.append(fold) return dataSet_spilt # 構(gòu)造數(shù)據(jù)子集 def get_subsample(dataSet, ratio): subdataSet = [] lenSubdata = round(len(dataSet) * ratio)#返回浮點(diǎn)數(shù) while len(subdataSet) < lenSubdata: index = randrange(len(dataSet) - 1) subdataSet.append(dataSet[index]) # print len(subdataSet) return subdataSet # 分割數(shù)據(jù)集 def data_spilt(dataSet, index, value): left = [] right = [] for row in dataSet: if row[index] < value: left.append(row) else: right.append(row) return left, right # 計(jì)算分割代價(jià) def spilt_loss(left, right, class_values): loss = 0.0 for class_value in class_values: left_size = len(left) if left_size != 0: # 防止除數(shù)為零 prop = [row[-1] for row in left].count(class_value) / float(left_size) loss += (prop * (1.0 - prop)) right_size = len(right) if right_size != 0: prop = [row[-1] for row in right].count(class_value) / float(right_size) loss += (prop * (1.0 - prop)) return loss # 選取任意的n個(gè)特征,在這n個(gè)特征中,選取分割時(shí)的最優(yōu)特征 def get_best_spilt(dataSet, n_features): features = [] class_values = list(set(row[-1] for row in dataSet)) b_index, b_value, b_loss, b_left, b_right = 999, 999, 999, None, None while len(features) < n_features: index = randrange(len(dataSet[0]) - 1) if index not in features: features.append(index) # print 'features:',features for index in features:#找到列的最適合做節(jié)點(diǎn)的索引,(損失最?。? for row in dataSet: left, right = data_spilt(dataSet, index, row[index])#以它為節(jié)點(diǎn)的,左右分支 loss = spilt_loss(left, right, class_values) if loss < b_loss:#尋找最小分割代價(jià) b_index, b_value, b_loss, b_left, b_right = index, row[index], loss, left, right # print b_loss # print type(b_index) return {'index': b_index, 'value': b_value, 'left': b_left, 'right': b_right} # 決定輸出標(biāo)簽 def decide_label(data): output = [row[-1] for row in data] return max(set(output), key=output.count) # 子分割,不斷地構(gòu)建葉節(jié)點(diǎn)的過(guò)程對(duì)對(duì)對(duì) def sub_spilt(root, n_features, max_depth, min_size, depth): left = root['left'] # print left right = root['right'] del (root['left']) del (root['right']) # print depth if not left or not right: root['left'] = root['right'] = decide_label(left + right) # print 'testing' return if depth > max_depth: root['left'] = decide_label(left) root['right'] = decide_label(right) return if len(left) < min_size: root['left'] = decide_label(left) else: root['left'] = get_best_spilt(left, n_features) # print 'testing_left' sub_spilt(root['left'], n_features, max_depth, min_size, depth + 1) if len(right) < min_size: root['right'] = decide_label(right) else: root['right'] = get_best_spilt(right, n_features) # print 'testing_right' sub_spilt(root['right'], n_features, max_depth, min_size, depth + 1) # 構(gòu)造決策樹(shù) def build_tree(dataSet, n_features, max_depth, min_size): root = get_best_spilt(dataSet, n_features) sub_spilt(root, n_features, max_depth, min_size, 1) return root # 預(yù)測(cè)測(cè)試集結(jié)果 def predict(tree, row): predictions = [] if row[tree['index']] < tree['value']: if isinstance(tree['left'], dict): return predict(tree['left'], row) else: return tree['left'] else: if isinstance(tree['right'], dict): return predict(tree['right'], row) else: return tree['right'] # predictions=set(predictions) def bagging_predict(trees, row): predictions = [predict(tree, row) for tree in trees] return max(set(predictions), key=predictions.count) # 創(chuàng)建隨機(jī)森林 def random_forest(train, test, ratio, n_feature, max_depth, min_size, n_trees): trees = [] for i in range(n_trees): train = get_subsample(train, ratio)#從切割的數(shù)據(jù)集中選取子集 tree = build_tree(train, n_features, max_depth, min_size) # print 'tree %d: '%i,tree trees.append(tree) # predict_values = [predict(trees,row) for row in test] predict_values = [bagging_predict(trees, row) for row in test] return predict_values # 計(jì)算準(zhǔn)確率 def accuracy(predict_values, actual): correct = 0 for i in range(len(actual)): if actual[i] == predict_values[i]: correct += 1 return correct / float(len(actual)) if __name__ == '__main__': seed(1) dataSet = loadCSV(r'G:\0研究生\tianchiCompetition\訓(xùn)練小樣本2.csv') column_to_float(dataSet) n_folds = 5 max_depth = 15 min_size = 1 ratio = 1.0 # n_features=sqrt(len(dataSet)-1) n_features = 15 n_trees = 10 folds = spiltDataSet(dataSet, n_folds)#先是切割數(shù)據(jù)集 scores = [] for fold in folds: train_set = folds[ :] # 此處不能簡(jiǎn)單地用train_set=folds,這樣用屬于引用,那么當(dāng)train_set的值改變的時(shí)候,folds的值也會(huì)改變,所以要用復(fù)制的形式。(L[:])能夠復(fù)制序列,D.copy() 能夠復(fù)制字典,list能夠生成拷貝 list(L) train_set.remove(fold)#選好訓(xùn)練集 # print len(folds) train_set = sum(train_set, []) # 將多個(gè)fold列表組合成一個(gè)train_set列表 # print len(train_set) test_set = [] for row in fold: row_copy = list(row) row_copy[-1] = None test_set.append(row_copy) # for row in test_set: # print row[-1] actual = [row[-1] for row in fold] predict_values = random_forest(train_set, test_set, ratio, n_features, max_depth, min_size, n_trees) accur = accuracy(predict_values, actual) scores.append(accur) print ('Trees is %d' % n_trees) print ('scores:%s' % scores) print ('mean score:%s' % (sum(scores) / float(len(scores))))
2.5 隨機(jī)森林分類sonic data
# CART on the Bank Note dataset from random import seed from random import randrange from csv import reader # Load a CSV file def load_csv(filename): file = open(filename, "r") lines = reader(file) dataset = list(lines) return dataset # Convert string column to float def str_column_to_float(dataset, column): for row in dataset: row[column] = float(row[column].strip()) # Split a dataset into k folds def cross_validation_split(dataset, n_folds): dataset_split = list() dataset_copy = list(dataset) fold_size = int(len(dataset) / n_folds) for i in range(n_folds): fold = list() while len(fold) < fold_size: index = randrange(len(dataset_copy)) fold.append(dataset_copy.pop(index)) dataset_split.append(fold) return dataset_split # Calculate accuracy percentage def accuracy_metric(actual, predicted): correct = 0 for i in range(len(actual)): if actual[i] == predicted[i]: correct += 1 return correct / float(len(actual)) * 100.0 # Evaluate an algorithm using a cross validation split def evaluate_algorithm(dataset, algorithm, n_folds, *args): folds = cross_validation_split(dataset, n_folds) scores = list() for fold in folds: train_set = list(folds) train_set.remove(fold) train_set = sum(train_set, []) test_set = list() for row in fold: row_copy = list(row) test_set.append(row_copy) row_copy[-1] = None predicted = algorithm(train_set, test_set, *args) actual = [row[-1] for row in fold] accuracy = accuracy_metric(actual, predicted) scores.append(accuracy) return scores # Split a data set based on an attribute and an attribute value def test_split(index, value, dataset): left, right = list(), list() for row in dataset: if row[index] < value: left.append(row) else: right.append(row) return left, right # Calculate the Gini index for a split dataset def gini_index(groups, class_values): gini = 0.0 for class_value in class_values: for group in groups: size = len(group) if size == 0: continue proportion = [row[-1] for row in group].count(class_value) / float(size) gini += (proportion * (1.0 - proportion)) return gini # Select the best split point for a dataset def get_split(dataset): class_values = list(set(row[-1] for row in dataset)) b_index, b_value, b_score, b_groups = 999, 999, 999, None for index in range(len(dataset[0])-1): for row in dataset: groups = test_split(index, row[index], dataset) gini = gini_index(groups, class_values) if gini < b_score: b_index, b_value, b_score, b_groups = index, row[index], gini, groups print ({'index':b_index, 'value':b_value}) return {'index':b_index, 'value':b_value, 'groups':b_groups} # Create a terminal node value def to_terminal(group): outcomes = [row[-1] for row in group] return max(set(outcomes), key=outcomes.count) # Create child splits for a node or make terminal def split(node, max_depth, min_size, depth): left, right = node['groups'] del(node['groups']) # check for a no split if not left or not right: node['left'] = node['right'] = to_terminal(left + right) return # check for max depth if depth >= max_depth: node['left'], node['right'] = to_terminal(left), to_terminal(right) return # process left child if len(left) <= min_size: node['left'] = to_terminal(left) else: node['left'] = get_split(left) split(node['left'], max_depth, min_size, depth+1) # process right child if len(right) <= min_size: node['right'] = to_terminal(right) else: node['right'] = get_split(right) split(node['right'], max_depth, min_size, depth+1) # Build a decision tree def build_tree(train, max_depth, min_size): root = get_split(train) split(root, max_depth, min_size, 1) return root # Make a prediction with a decision tree def predict(node, row): if row[node['index']] < node['value']: if isinstance(node['left'], dict): return predict(node['left'], row) else: return node['left'] else: if isinstance(node['right'], dict): return predict(node['right'], row) else: return node['right'] # Classification and Regression Tree Algorithm def decision_tree(train, test, max_depth, min_size): tree = build_tree(train, max_depth, min_size) predictions = list() for row in test: prediction = predict(tree, row) predictions.append(prediction) return(predictions) # Test CART on Bank Note dataset seed(1) # load and prepare data filename = r'G:\0pythonstudy\決策樹(shù)\sonar.all-data.csv' dataset = load_csv(filename) # convert string attributes to integers for i in range(len(dataset[0])-1): str_column_to_float(dataset, i) # evaluate algorithm n_folds = 5 max_depth = 5 min_size = 10 scores = evaluate_algorithm(dataset, decision_tree, n_folds, max_depth, min_size) print('Scores: %s' % scores) print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))
運(yùn)行結(jié)果:
{'index': 38, 'value': 0.0894}
{'index': 36, 'value': 0.8459}
{'index': 50, 'value': 0.0024}
{'index': 15, 'value': 0.0906}
{'index': 16, 'value': 0.9819}
{'index': 10, 'value': 0.0785}
{'index': 16, 'value': 0.0886}
{'index': 38, 'value': 0.0621}
{'index': 5, 'value': 0.0226}
{'index': 8, 'value': 0.0368}
{'index': 11, 'value': 0.0754}
{'index': 0, 'value': 0.0239}
{'index': 8, 'value': 0.0368}
{'index': 29, 'value': 0.1671}
{'index': 46, 'value': 0.0237}
{'index': 38, 'value': 0.0621}
{'index': 14, 'value': 0.0668}
{'index': 4, 'value': 0.0167}
{'index': 37, 'value': 0.0836}
{'index': 12, 'value': 0.0616}
{'index': 7, 'value': 0.0333}
{'index': 33, 'value': 0.8741}
{'index': 16, 'value': 0.0886}
{'index': 8, 'value': 0.0368}
{'index': 33, 'value': 0.0798}
{'index': 44, 'value': 0.0298}
Scores: [48.78048780487805, 70.73170731707317, 58.536585365853654, 51.2195121951
2195, 39.02439024390244]
Mean Accuracy: 53.659%
請(qǐng)按任意鍵繼續(xù). . .
知識(shí)點(diǎn):
1.load CSV file
from csv import reader # Load a CSV file def load_csv(filename): file = open(filename, "r") lines = reader(file) dataset = list(lines) return dataset filename = r'G:\0pythonstudy\決策樹(shù)\sonar.all-data.csv' dataset=load_csv(filename) print(dataset)
2.把數(shù)據(jù)轉(zhuǎn)化成float格式
# Convert string column to float def str_column_to_float(dataset, column): for row in dataset: row[column] = float(row[column].strip()) # print(row[column]) # convert string attributes to integers for i in range(len(dataset[0])-1): str_column_to_float(dataset, i)
3.把最后一列的分類字符串轉(zhuǎn)化成0、1整數(shù)
def str_column_to_int(dataset, column): class_values = [row[column] for row in dataset]#生成一個(gè)class label的list # print(class_values) unique = set(class_values)#set 獲得list的不同元素 print(unique) lookup = dict()#定義一個(gè)字典 # print(enumerate(unique)) for i, value in enumerate(unique): lookup[value] = i # print(lookup) for row in dataset: row[column] = lookup[row[column]] print(lookup['M'])
4、把數(shù)據(jù)集分割成K份
# Split a dataset into k folds def cross_validation_split(dataset, n_folds): dataset_split = list()#生成空列表 dataset_copy = list(dataset) print(len(dataset_copy)) print(len(dataset)) #print(dataset_copy) fold_size = int(len(dataset) / n_folds) for i in range(n_folds): fold = list() while len(fold) < fold_size: index = randrange(len(dataset_copy)) # print(index) fold.append(dataset_copy.pop(index))#使用.pop()把里邊的元素都刪除(相當(dāng)于轉(zhuǎn)移),這k份元素各不相同。 dataset_split.append(fold) return dataset_split n_folds=5 folds = cross_validation_split(dataset, n_folds)#k份元素各不相同的訓(xùn)練集
5.計(jì)算正確率
# Calculate accuracy percentage def accuracy_metric(actual, predicted): correct = 0 for i in range(len(actual)): if actual[i] == predicted[i]: correct += 1 return correct / float(len(actual)) * 100.0#這個(gè)是二值分類正確性的表達(dá)式
6.二分類每列
# Split a data set based on an attribute and an attribute value def test_split(index, value, dataset): left, right = list(), list()#初始化兩個(gè)空列表 for row in dataset: if row[index] < value: left.append(row) else: right.append(row) return left, right #返回兩個(gè)列表,每個(gè)列表以value為界限對(duì)指定行(index)進(jìn)行二分類。
7.使用gini系數(shù)來(lái)獲得最佳分割點(diǎn)
# Calculate the Gini index for a split dataset def gini_index(groups, class_values): gini = 0.0 for class_value in class_values: for group in groups: size = len(group) if size == 0: continue proportion = [row[-1] for row in group].count(class_value) / float(size) gini += (proportion * (1.0 - proportion)) return gini # Select the best split point for a dataset def get_split(dataset): class_values = list(set(row[-1] for row in dataset)) b_index, b_value, b_score, b_groups = 999, 999, 999, None for index in range(len(dataset[0])-1): for row in dataset: groups = test_split(index, row[index], dataset) gini = gini_index(groups, class_values) if gini < b_score: b_index, b_value, b_score, b_groups = index, row[index], gini, groups # print(groups) print ({'index':b_index, 'value':b_value,'score':gini}) return {'index':b_index, 'value':b_value, 'groups':b_groups}
這段代碼,在求gini指數(shù),直接應(yīng)用定義式,不難理解。獲得最佳分割點(diǎn)可能比較難看懂,這里用了兩層迭代,一層是對(duì)不同列的迭代,一層是對(duì)不同行的迭代。并且,每次迭代,都對(duì)gini系數(shù)進(jìn)行更新。
8、決策樹(shù)生成
# Create child splits for a node or make terminal def split(node, max_depth, min_size, depth): left, right = node['groups'] del(node['groups']) # check for a no split if not left or not right: node['left'] = node['right'] = to_terminal(left + right) return # check for max depth if depth >= max_depth: node['left'], node['right'] = to_terminal(left), to_terminal(right) return # process left child if len(left) <= min_size: node['left'] = to_terminal(left) else: node['left'] = get_split(left) split(node['left'], max_depth, min_size, depth+1) # process right child if len(right) <= min_size: node['right'] = to_terminal(right) else: node['right'] = get_split(right) split(node['right'], max_depth, min_size, depth+1)
這里使用了遞歸編程,不斷生成左叉樹(shù)和右叉樹(shù)。
9.構(gòu)建決策樹(shù)
# Build a decision tree def build_tree(train, max_depth, min_size): root = get_split(train) split(root, max_depth, min_size, 1) return root tree=build_tree(train_set, max_depth, min_size) print(tree)
10、預(yù)測(cè)test集
# Build a decision tree def build_tree(train, max_depth, min_size): root = get_split(train)#獲得最好的分割點(diǎn),下標(biāo)值,groups split(root, max_depth, min_size, 1) return root # tree=build_tree(train_set, max_depth, min_size) # print(tree) # Make a prediction with a decision tree def predict(node, row): print(row[node['index']]) print(node['value']) if row[node['index']] < node['value']:#用測(cè)試集來(lái)代入訓(xùn)練的最好分割點(diǎn),分割點(diǎn)有偏差時(shí),通過(guò)搜索左右叉樹(shù)來(lái)進(jìn)一步比較。 if isinstance(node['left'], dict):#如果是字典類型,執(zhí)行操作 return predict(node['left'], row) else: return node['left'] else: if isinstance(node['right'], dict): return predict(node['right'], row) else: return node['right'] tree = build_tree(train_set, max_depth, min_size) predictions = list() for row in test_set: prediction = predict(tree, row) predictions.append(prediction)
11.評(píng)價(jià)決策樹(shù)
# Evaluate an algorithm using a cross validation split def evaluate_algorithm(dataset, algorithm, n_folds, *args): folds = cross_validation_split(dataset, n_folds) scores = list() for fold in folds: train_set = list(folds) train_set.remove(fold) train_set = sum(train_set, []) test_set = list() for row in fold: row_copy = list(row) test_set.append(row_copy) row_copy[-1] = None predicted = algorithm(train_set, test_set, *args) actual = [row[-1] for row in fold] accuracy = accuracy_metric(actual, predicted) scores.append(accuracy) return scores
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
- python中邏輯與或(and、or)和按位與或異或(&、|、^)區(qū)別
- python中and和or邏輯運(yùn)算符的用法示例
- python中not、and和or的優(yōu)先級(jí)與詳細(xì)用法介紹
- 解決Python 異常TypeError: cannot concatenate ''str'' and ''int'' objects
- 淺談Python中(&,|)和(and,or)之間的區(qū)別
- python and or用法詳解
- Python中的random.uniform()函數(shù)教程與實(shí)例解析
- Python 中 and, or, &, |, ^ 的使用小結(jié)
相關(guān)文章
Python實(shí)現(xiàn)自定義Jupyter魔法命令
相信大家都用過(guò)?jupyter,也用過(guò)里面的魔法命令,這些魔法命令都以%或者%%開(kāi)頭。用法還是比較簡(jiǎn)單的,但是我們能不能自定義魔法命令呢?本文就來(lái)教大家如何自定義Jupyter魔法命令2022-08-08python協(xié)程gevent案例 爬取斗魚圖片過(guò)程解析
這篇文章主要介紹了python協(xié)程gevent案例 爬取斗魚圖片過(guò)程解析,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-08-08python shell根據(jù)ip獲取主機(jī)名代碼示例
這篇文章主要介紹了python shell根據(jù)ip獲取主機(jī)名代碼示例,涉及用socket模塊和shell中hostname命令獲取等相關(guān)內(nèi)容,具有一定參考價(jià)值,需要的朋友可以了解下。2017-11-11python ftfy庫(kù)處理金融方面文件編碼錯(cuò)誤實(shí)例詳解
這篇文章主要為大家介紹了使用python ftfy庫(kù)處理金融方面文件編碼錯(cuò)誤實(shí)例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2024-01-01