欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python實(shí)現(xiàn)隨機(jī)森林random forest的原理及方法

 更新時(shí)間:2017年12月21日 11:54:24   作者:rosefun96  
本篇文章主要介紹了python實(shí)現(xiàn)隨機(jī)森林random forest的原理及方法,詳細(xì)的介紹了隨機(jī)森林的原理和python實(shí)現(xiàn),非常具有參考價(jià)值,有興趣的可以了解一下

引言

想通過(guò)隨機(jī)森林來(lái)獲取數(shù)據(jù)的主要特征

1、理論

隨機(jī)森林是一個(gè)高度靈活的機(jī)器學(xué)習(xí)方法,擁有廣泛的應(yīng)用前景,從市場(chǎng)營(yíng)銷到醫(yī)療保健保險(xiǎn)。 既可以用來(lái)做市場(chǎng)營(yíng)銷模擬的建模,統(tǒng)計(jì)客戶來(lái)源,保留和流失。也可用來(lái)預(yù)測(cè)疾病的風(fēng)險(xiǎn)和病患者的易感性。

根據(jù)個(gè)體學(xué)習(xí)器的生成方式,目前的集成學(xué)習(xí)方法大致可分為兩大類,即個(gè)體學(xué)習(xí)器之間存在強(qiáng)依賴關(guān)系,必須串行生成的序列化方法,以及個(gè)體學(xué)習(xí)器間不存在強(qiáng)依賴關(guān)系,可同時(shí)生成的并行化方法;

前者的代表是Boosting,后者的代表是Bagging和“隨機(jī)森林”(Random
Forest)

隨機(jī)森林在以決策樹(shù)為基學(xué)習(xí)器構(gòu)建Bagging集成的基礎(chǔ)上,進(jìn)一步在決策樹(shù)的訓(xùn)練過(guò)程中引入了隨機(jī)屬性選擇(即引入隨機(jī)特征選擇)。

簡(jiǎn)單來(lái)說(shuō),隨機(jī)森林就是對(duì)決策樹(shù)的集成,但有兩點(diǎn)不同:

(2)特征選取的差異性:每個(gè)決策樹(shù)的n個(gè)分類特征是在所有特征中隨機(jī)選擇的(n是一個(gè)需要我們自己調(diào)整的參數(shù))
隨機(jī)森林,簡(jiǎn)單理解, 比如預(yù)測(cè)salary,就是構(gòu)建多個(gè)決策樹(shù)job,age,house,然后根據(jù)要預(yù)測(cè)的量的各個(gè)特征(teacher,39,suburb)分別在對(duì)應(yīng)決策樹(shù)的目標(biāo)值概率(salary<5000,salary>=5000),從而,確定預(yù)測(cè)量的發(fā)生概率(如,預(yù)測(cè)出P(salary<5000)=0.3).

隨機(jī)森林是一個(gè)可做能夠回歸和分類。 它具備處理大數(shù)據(jù)的特性,而且它有助于估計(jì)或變量是非常重要的基礎(chǔ)數(shù)據(jù)建模。

參數(shù)說(shuō)明:

最主要的兩個(gè)參數(shù)是n_estimators和max_features。

n_estimators:表示森林里樹(shù)的個(gè)數(shù)。理論上是越大越好。但是伴隨著就是計(jì)算時(shí)間的增長(zhǎng)。但是并不是取得越大就會(huì)越好,預(yù)測(cè)效果最好的將會(huì)出現(xiàn)在合理的樹(shù)個(gè)數(shù)。

max_features:隨機(jī)選擇特征集合的子集合,并用來(lái)分割節(jié)點(diǎn)。子集合的個(gè)數(shù)越少,方差就會(huì)減少的越快,但同時(shí)偏差就會(huì)增加的越快。根據(jù)較好的實(shí)踐經(jīng)驗(yàn)。如果是回歸問(wèn)題則:

max_features=n_features,如果是分類問(wèn)題則max_features=sqrt(n_features)。

如果想獲取較好的結(jié)果,必須將max_depth=None,同時(shí)min_sample_split=1。
同時(shí)還要記得進(jìn)行cross_validated(交叉驗(yàn)證),除此之外記得在random forest中,bootstrap=True。但在extra-trees中,bootstrap=False。

2、隨機(jī)森林python實(shí)現(xiàn)

2.1Demo1

實(shí)現(xiàn)隨機(jī)森林基本功能

#隨機(jī)森林
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import RandomForestRegressor 
import numpy as np 

from sklearn.datasets import load_iris 
iris=load_iris() 
#print iris#iris的4個(gè)屬性是:萼片寬度 萼片長(zhǎng)度 花瓣寬度 花瓣長(zhǎng)度 標(biāo)簽是花的種類:setosa versicolour virginica 
print(iris['target'].shape)
rf=RandomForestRegressor()#這里使用了默認(rèn)的參數(shù)設(shè)置 
rf.fit(iris.data[:150],iris.target[:150])#進(jìn)行模型的訓(xùn)練 

#隨機(jī)挑選兩個(gè)預(yù)測(cè)不相同的樣本 
instance=iris.data[[100,109]] 
print(instance)
rf.predict(instance[[0]])
print('instance 0 prediction;',rf.predict(instance[[0]]))
print( 'instance 1 prediction;',rf.predict(instance[[1]]))
print(iris.target[100],iris.target[109]) 

運(yùn)行結(jié)果

(150,)
[[ 6.3  3.3  6.   2.5]
 [ 7.2  3.6  6.1  2.5]]
instance 0 prediction; [ 2.]
instance 1 prediction; [ 2.]
2 2

2.2 Demo2

3種方法的比較

#random forest test
from sklearn.model_selection import cross_val_score
from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
X, y = make_blobs(n_samples=10000, n_features=10, centers=100,random_state=0)

clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,random_state=0)
scores = cross_val_score(clf, X, y)
print(scores.mean())    


clf = RandomForestClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0)
scores = cross_val_score(clf, X, y)
print(scores.mean())    

clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0)
scores = cross_val_score(clf, X, y)
print(scores.mean())

運(yùn)行結(jié)果:

0.979408793821
0.999607843137
0.999898989899

2.3 Demo3-實(shí)現(xiàn)特征選擇

#隨機(jī)森林2
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import RandomForestRegressor 
import numpy as np 
from sklearn.datasets import load_iris 
iris=load_iris() 

from sklearn.model_selection import cross_val_score, ShuffleSplit 
X = iris["data"] 
Y = iris["target"] 
names = iris["feature_names"] 
rf = RandomForestRegressor() 
scores = [] 
for i in range(X.shape[1]): 
 score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2", 
    cv=ShuffleSplit(len(X), 3, .3)) 
 scores.append((round(np.mean(score), 3), names[i])) 
print(sorted(scores, reverse=True))

運(yùn)行結(jié)果:

[(0.89300000000000002, 'petal width (cm)'), (0.82099999999999995, 'petal length
(cm)'), (0.13, 'sepal length (cm)'), (-0.79100000000000004, 'sepal width (cm)')]

2.4 demo4-隨機(jī)森林

本來(lái)想利用以下代碼來(lái)構(gòu)建隨機(jī)隨機(jī)森林決策樹(shù),但是,遇到的問(wèn)題是,程序一直在運(yùn)行,無(wú)法響應(yīng),還需要調(diào)試。

#隨機(jī)森林4
#coding:utf-8 
import csv 
from random import seed 
from random import randrange 
from math import sqrt 
def loadCSV(filename):#加載數(shù)據(jù),一行行的存入列表 
 dataSet = [] 
 with open(filename, 'r') as file: 
 csvReader = csv.reader(file) 
 for line in csvReader: 
  dataSet.append(line) 
 return dataSet 

# 除了標(biāo)簽列,其他列都轉(zhuǎn)換為float類型 
def column_to_float(dataSet): 
 featLen = len(dataSet[0]) - 1 
 for data in dataSet: 
 for column in range(featLen): 
  data[column] = float(data[column].strip()) 

# 將數(shù)據(jù)集隨機(jī)分成N塊,方便交叉驗(yàn)證,其中一塊是測(cè)試集,其他四塊是訓(xùn)練集 
def spiltDataSet(dataSet, n_folds): 
 fold_size = int(len(dataSet) / n_folds) 
 dataSet_copy = list(dataSet) 
 dataSet_spilt = [] 
 for i in range(n_folds): 
 fold = [] 
 while len(fold) < fold_size: # 這里不能用if,if只是在第一次判斷時(shí)起作用,while執(zhí)行循環(huán),直到條件不成立 
  index = randrange(len(dataSet_copy)) 
  fold.append(dataSet_copy.pop(index)) # pop() 函數(shù)用于移除列表中的一個(gè)元素(默認(rèn)最后一個(gè)元素),并且返回該元素的值。 
 dataSet_spilt.append(fold) 
 return dataSet_spilt 

# 構(gòu)造數(shù)據(jù)子集 
def get_subsample(dataSet, ratio): 
 subdataSet = [] 
 lenSubdata = round(len(dataSet) * ratio)#返回浮點(diǎn)數(shù) 
 while len(subdataSet) < lenSubdata: 
 index = randrange(len(dataSet) - 1) 
 subdataSet.append(dataSet[index]) 
 # print len(subdataSet) 
 return subdataSet 

# 分割數(shù)據(jù)集 
def data_spilt(dataSet, index, value): 
 left = [] 
 right = [] 
 for row in dataSet: 
 if row[index] < value: 
  left.append(row) 
 else: 
  right.append(row) 
 return left, right 

# 計(jì)算分割代價(jià) 
def spilt_loss(left, right, class_values): 
 loss = 0.0 
 for class_value in class_values: 
 left_size = len(left) 
 if left_size != 0: # 防止除數(shù)為零 
  prop = [row[-1] for row in left].count(class_value) / float(left_size) 
  loss += (prop * (1.0 - prop)) 
 right_size = len(right) 
 if right_size != 0: 
  prop = [row[-1] for row in right].count(class_value) / float(right_size) 
  loss += (prop * (1.0 - prop)) 
 return loss 

# 選取任意的n個(gè)特征,在這n個(gè)特征中,選取分割時(shí)的最優(yōu)特征 
def get_best_spilt(dataSet, n_features): 
 features = [] 
 class_values = list(set(row[-1] for row in dataSet)) 
 b_index, b_value, b_loss, b_left, b_right = 999, 999, 999, None, None 
 while len(features) < n_features: 
 index = randrange(len(dataSet[0]) - 1) 
 if index not in features: 
  features.append(index) 
 # print 'features:',features 
 for index in features:#找到列的最適合做節(jié)點(diǎn)的索引,(損失最?。?
 for row in dataSet: 
  left, right = data_spilt(dataSet, index, row[index])#以它為節(jié)點(diǎn)的,左右分支 
  loss = spilt_loss(left, right, class_values) 
  if loss < b_loss:#尋找最小分割代價(jià) 
  b_index, b_value, b_loss, b_left, b_right = index, row[index], loss, left, right 
 # print b_loss 
 # print type(b_index) 
 return {'index': b_index, 'value': b_value, 'left': b_left, 'right': b_right} 

# 決定輸出標(biāo)簽 
def decide_label(data): 
 output = [row[-1] for row in data] 
 return max(set(output), key=output.count) 

# 子分割,不斷地構(gòu)建葉節(jié)點(diǎn)的過(guò)程對(duì)對(duì)對(duì) 
def sub_spilt(root, n_features, max_depth, min_size, depth): 
 left = root['left'] 
 # print left 
 right = root['right'] 
 del (root['left']) 
 del (root['right']) 
 # print depth 
 if not left or not right: 
 root['left'] = root['right'] = decide_label(left + right) 
 # print 'testing' 
 return 
 if depth > max_depth: 
 root['left'] = decide_label(left) 
 root['right'] = decide_label(right) 
 return 
 if len(left) < min_size: 
 root['left'] = decide_label(left) 
 else: 
 root['left'] = get_best_spilt(left, n_features) 
 # print 'testing_left' 
 sub_spilt(root['left'], n_features, max_depth, min_size, depth + 1) 
 if len(right) < min_size: 
 root['right'] = decide_label(right) 
 else: 
 root['right'] = get_best_spilt(right, n_features) 
 # print 'testing_right' 
 sub_spilt(root['right'], n_features, max_depth, min_size, depth + 1) 

 # 構(gòu)造決策樹(shù) 
def build_tree(dataSet, n_features, max_depth, min_size): 
 root = get_best_spilt(dataSet, n_features) 
 sub_spilt(root, n_features, max_depth, min_size, 1) 
 return root 
# 預(yù)測(cè)測(cè)試集結(jié)果 
def predict(tree, row): 
 predictions = [] 
 if row[tree['index']] < tree['value']: 
 if isinstance(tree['left'], dict): 
  return predict(tree['left'], row) 
 else: 
  return tree['left'] 
 else: 
 if isinstance(tree['right'], dict): 
  return predict(tree['right'], row) 
 else: 
  return tree['right'] 
  # predictions=set(predictions) 
def bagging_predict(trees, row): 
 predictions = [predict(tree, row) for tree in trees] 
 return max(set(predictions), key=predictions.count) 
# 創(chuàng)建隨機(jī)森林 
def random_forest(train, test, ratio, n_feature, max_depth, min_size, n_trees): 
 trees = [] 
 for i in range(n_trees): 
 train = get_subsample(train, ratio)#從切割的數(shù)據(jù)集中選取子集 
 tree = build_tree(train, n_features, max_depth, min_size) 
 # print 'tree %d: '%i,tree 
 trees.append(tree) 
 # predict_values = [predict(trees,row) for row in test] 
 predict_values = [bagging_predict(trees, row) for row in test] 
 return predict_values 
# 計(jì)算準(zhǔn)確率 
def accuracy(predict_values, actual): 
 correct = 0 
 for i in range(len(actual)): 
 if actual[i] == predict_values[i]: 
  correct += 1 
 return correct / float(len(actual)) 
if __name__ == '__main__': 
 seed(1) 
 dataSet = loadCSV(r'G:\0研究生\tianchiCompetition\訓(xùn)練小樣本2.csv') 
 column_to_float(dataSet) 
 n_folds = 5 
 max_depth = 15 
 min_size = 1 
 ratio = 1.0 
 # n_features=sqrt(len(dataSet)-1) 
 n_features = 15 
 n_trees = 10 
 folds = spiltDataSet(dataSet, n_folds)#先是切割數(shù)據(jù)集 
 scores = [] 
 for fold in folds: 
 train_set = folds[ 
   :] # 此處不能簡(jiǎn)單地用train_set=folds,這樣用屬于引用,那么當(dāng)train_set的值改變的時(shí)候,folds的值也會(huì)改變,所以要用復(fù)制的形式。(L[:])能夠復(fù)制序列,D.copy() 能夠復(fù)制字典,list能夠生成拷貝 list(L) 
 train_set.remove(fold)#選好訓(xùn)練集 
 # print len(folds) 
 train_set = sum(train_set, []) # 將多個(gè)fold列表組合成一個(gè)train_set列表 
 # print len(train_set) 
 test_set = [] 
 for row in fold: 
  row_copy = list(row) 
  row_copy[-1] = None 
  test_set.append(row_copy) 
  # for row in test_set: 
  # print row[-1] 
 actual = [row[-1] for row in fold] 
 predict_values = random_forest(train_set, test_set, ratio, n_features, max_depth, min_size, n_trees) 
 accur = accuracy(predict_values, actual) 
 scores.append(accur) 
 print ('Trees is %d' % n_trees) 
 print ('scores:%s' % scores) 
 print ('mean score:%s' % (sum(scores) / float(len(scores)))) 

2.5 隨機(jī)森林分類sonic data

# CART on the Bank Note dataset
from random import seed
from random import randrange
from csv import reader

# Load a CSV file
def load_csv(filename):
 file = open(filename, "r")
 lines = reader(file)
 dataset = list(lines)
 return dataset

# Convert string column to float
def str_column_to_float(dataset, column):
 for row in dataset:
 row[column] = float(row[column].strip())

# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
 dataset_split = list()
 dataset_copy = list(dataset)
 fold_size = int(len(dataset) / n_folds)
 for i in range(n_folds):
 fold = list()
 while len(fold) < fold_size:
  index = randrange(len(dataset_copy))
  fold.append(dataset_copy.pop(index))
 dataset_split.append(fold)
 return dataset_split

# Calculate accuracy percentage
def accuracy_metric(actual, predicted):
 correct = 0
 for i in range(len(actual)):
 if actual[i] == predicted[i]:
  correct += 1
 return correct / float(len(actual)) * 100.0

# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
 folds = cross_validation_split(dataset, n_folds)
 scores = list()
 for fold in folds:
 train_set = list(folds)
 train_set.remove(fold)
 train_set = sum(train_set, [])
 test_set = list()
 for row in fold:
  row_copy = list(row)
  test_set.append(row_copy)
  row_copy[-1] = None
 predicted = algorithm(train_set, test_set, *args)
 actual = [row[-1] for row in fold]
 accuracy = accuracy_metric(actual, predicted)
 scores.append(accuracy)
 return scores

# Split a data set based on an attribute and an attribute value
def test_split(index, value, dataset):
 left, right = list(), list()
 for row in dataset:
 if row[index] < value:
  left.append(row)
 else:
  right.append(row)
 return left, right

# Calculate the Gini index for a split dataset
def gini_index(groups, class_values):
 gini = 0.0
 for class_value in class_values:
 for group in groups:
  size = len(group)
  if size == 0:
  continue
  proportion = [row[-1] for row in group].count(class_value) / float(size)
  gini += (proportion * (1.0 - proportion))
 return gini

# Select the best split point for a dataset
def get_split(dataset):
 class_values = list(set(row[-1] for row in dataset))
 b_index, b_value, b_score, b_groups = 999, 999, 999, None
 for index in range(len(dataset[0])-1):
 for row in dataset:
  groups = test_split(index, row[index], dataset)
  gini = gini_index(groups, class_values)
  if gini < b_score:
  b_index, b_value, b_score, b_groups = index, row[index], gini, groups
 print ({'index':b_index, 'value':b_value})
 return {'index':b_index, 'value':b_value, 'groups':b_groups}

# Create a terminal node value
def to_terminal(group):
 outcomes = [row[-1] for row in group]
 return max(set(outcomes), key=outcomes.count)

# Create child splits for a node or make terminal
def split(node, max_depth, min_size, depth):
 left, right = node['groups']
 del(node['groups'])
 # check for a no split
 if not left or not right:
 node['left'] = node['right'] = to_terminal(left + right)
 return
 # check for max depth
 if depth >= max_depth:
 node['left'], node['right'] = to_terminal(left), to_terminal(right)
 return
 # process left child
 if len(left) <= min_size:
 node['left'] = to_terminal(left)
 else:
 node['left'] = get_split(left)
 split(node['left'], max_depth, min_size, depth+1)
 # process right child
 if len(right) <= min_size:
 node['right'] = to_terminal(right)
 else:
 node['right'] = get_split(right)
 split(node['right'], max_depth, min_size, depth+1)

# Build a decision tree
def build_tree(train, max_depth, min_size):
 root = get_split(train)
 split(root, max_depth, min_size, 1)
 return root

# Make a prediction with a decision tree
def predict(node, row):
 if row[node['index']] < node['value']:
 if isinstance(node['left'], dict):
  return predict(node['left'], row)
 else:
  return node['left']
 else:
 if isinstance(node['right'], dict):
  return predict(node['right'], row)
 else:
  return node['right']

# Classification and Regression Tree Algorithm
def decision_tree(train, test, max_depth, min_size):
 tree = build_tree(train, max_depth, min_size)
 predictions = list()
 for row in test:
 prediction = predict(tree, row)
 predictions.append(prediction)
 return(predictions)

# Test CART on Bank Note dataset
seed(1)
# load and prepare data
filename = r'G:\0pythonstudy\決策樹(shù)\sonar.all-data.csv'
dataset = load_csv(filename)
# convert string attributes to integers
for i in range(len(dataset[0])-1):
 str_column_to_float(dataset, i)
# evaluate algorithm
n_folds = 5
max_depth = 5
min_size = 10
scores = evaluate_algorithm(dataset, decision_tree, n_folds, max_depth, min_size)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))

運(yùn)行結(jié)果:

{'index': 38, 'value': 0.0894}
{'index': 36, 'value': 0.8459}
{'index': 50, 'value': 0.0024}
{'index': 15, 'value': 0.0906}
{'index': 16, 'value': 0.9819}
{'index': 10, 'value': 0.0785}
{'index': 16, 'value': 0.0886}
{'index': 38, 'value': 0.0621}
{'index': 5, 'value': 0.0226}
{'index': 8, 'value': 0.0368}
{'index': 11, 'value': 0.0754}
{'index': 0, 'value': 0.0239}
{'index': 8, 'value': 0.0368}
{'index': 29, 'value': 0.1671}
{'index': 46, 'value': 0.0237}
{'index': 38, 'value': 0.0621}
{'index': 14, 'value': 0.0668}
{'index': 4, 'value': 0.0167}
{'index': 37, 'value': 0.0836}
{'index': 12, 'value': 0.0616}
{'index': 7, 'value': 0.0333}
{'index': 33, 'value': 0.8741}
{'index': 16, 'value': 0.0886}
{'index': 8, 'value': 0.0368}
{'index': 33, 'value': 0.0798}
{'index': 44, 'value': 0.0298}
Scores: [48.78048780487805, 70.73170731707317, 58.536585365853654, 51.2195121951
2195, 39.02439024390244]
Mean Accuracy: 53.659%
請(qǐng)按任意鍵繼續(xù). . .

知識(shí)點(diǎn):

1.load CSV file

from csv import reader
# Load a CSV file
def load_csv(filename):
 file = open(filename, "r")
 lines = reader(file)
 dataset = list(lines)
 return dataset
filename = r'G:\0pythonstudy\決策樹(shù)\sonar.all-data.csv'
dataset=load_csv(filename)
print(dataset)

2.把數(shù)據(jù)轉(zhuǎn)化成float格式

# Convert string column to float
def str_column_to_float(dataset, column):
 for row in dataset:
 row[column] = float(row[column].strip())
 # print(row[column])
# convert string attributes to integers
for i in range(len(dataset[0])-1):
 str_column_to_float(dataset, i)

3.把最后一列的分類字符串轉(zhuǎn)化成0、1整數(shù)

def str_column_to_int(dataset, column):
 class_values = [row[column] for row in dataset]#生成一個(gè)class label的list
 # print(class_values)
 unique = set(class_values)#set 獲得list的不同元素
 print(unique)
 lookup = dict()#定義一個(gè)字典
 # print(enumerate(unique))
 for i, value in enumerate(unique):
 lookup[value] = i
 # print(lookup)
 for row in dataset:
 row[column] = lookup[row[column]]
 print(lookup['M'])

4、把數(shù)據(jù)集分割成K份

# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
 dataset_split = list()#生成空列表
 dataset_copy = list(dataset)
 print(len(dataset_copy))
 print(len(dataset))
 #print(dataset_copy)
 fold_size = int(len(dataset) / n_folds)
 for i in range(n_folds):
 fold = list()
 while len(fold) < fold_size:
  index = randrange(len(dataset_copy))
  # print(index)
  fold.append(dataset_copy.pop(index))#使用.pop()把里邊的元素都刪除(相當(dāng)于轉(zhuǎn)移),這k份元素各不相同。
 dataset_split.append(fold)
 return dataset_split
n_folds=5 
folds = cross_validation_split(dataset, n_folds)#k份元素各不相同的訓(xùn)練集

5.計(jì)算正確率

# Calculate accuracy percentage
def accuracy_metric(actual, predicted):
 correct = 0
 for i in range(len(actual)):
 if actual[i] == predicted[i]:
  correct += 1
 return correct / float(len(actual)) * 100.0#這個(gè)是二值分類正確性的表達(dá)式

6.二分類每列

# Split a data set based on an attribute and an attribute value
def test_split(index, value, dataset):
 left, right = list(), list()#初始化兩個(gè)空列表
 for row in dataset:
 if row[index] < value:
  left.append(row)
 else:
  right.append(row)
 return left, right #返回兩個(gè)列表,每個(gè)列表以value為界限對(duì)指定行(index)進(jìn)行二分類。

7.使用gini系數(shù)來(lái)獲得最佳分割點(diǎn)

# Calculate the Gini index for a split dataset
def gini_index(groups, class_values):
 gini = 0.0
 for class_value in class_values:
 for group in groups:
  size = len(group)
  if size == 0:
  continue
  proportion = [row[-1] for row in group].count(class_value) / float(size)
  gini += (proportion * (1.0 - proportion))
 return gini

# Select the best split point for a dataset
def get_split(dataset):
 class_values = list(set(row[-1] for row in dataset))
 b_index, b_value, b_score, b_groups = 999, 999, 999, None
 for index in range(len(dataset[0])-1):
 for row in dataset:
  groups = test_split(index, row[index], dataset)
  gini = gini_index(groups, class_values)
  if gini < b_score:
  b_index, b_value, b_score, b_groups = index, row[index], gini, groups
 # print(groups)
 print ({'index':b_index, 'value':b_value,'score':gini})
 return {'index':b_index, 'value':b_value, 'groups':b_groups}

這段代碼,在求gini指數(shù),直接應(yīng)用定義式,不難理解。獲得最佳分割點(diǎn)可能比較難看懂,這里用了兩層迭代,一層是對(duì)不同列的迭代,一層是對(duì)不同行的迭代。并且,每次迭代,都對(duì)gini系數(shù)進(jìn)行更新。

8、決策樹(shù)生成

# Create child splits for a node or make terminal
def split(node, max_depth, min_size, depth):
 left, right = node['groups']
 del(node['groups'])
 # check for a no split
 if not left or not right:
 node['left'] = node['right'] = to_terminal(left + right)
 return
 # check for max depth
 if depth >= max_depth:
 node['left'], node['right'] = to_terminal(left), to_terminal(right)
 return
 # process left child
 if len(left) <= min_size:
 node['left'] = to_terminal(left)
 else:
 node['left'] = get_split(left)
 split(node['left'], max_depth, min_size, depth+1)
 # process right child
 if len(right) <= min_size:
 node['right'] = to_terminal(right)
 else:
 node['right'] = get_split(right)
 split(node['right'], max_depth, min_size, depth+1)

這里使用了遞歸編程,不斷生成左叉樹(shù)和右叉樹(shù)。

9.構(gòu)建決策樹(shù)

# Build a decision tree
def build_tree(train, max_depth, min_size):
 root = get_split(train)
 split(root, max_depth, min_size, 1)
 return root 
tree=build_tree(train_set, max_depth, min_size)
print(tree)

10、預(yù)測(cè)test集

# Build a decision tree
def build_tree(train, max_depth, min_size):
 root = get_split(train)#獲得最好的分割點(diǎn),下標(biāo)值,groups
 split(root, max_depth, min_size, 1)
 return root 
# tree=build_tree(train_set, max_depth, min_size)
# print(tree) 

# Make a prediction with a decision tree
def predict(node, row):
 print(row[node['index']])
 print(node['value'])
 if row[node['index']] < node['value']:#用測(cè)試集來(lái)代入訓(xùn)練的最好分割點(diǎn),分割點(diǎn)有偏差時(shí),通過(guò)搜索左右叉樹(shù)來(lái)進(jìn)一步比較。
 if isinstance(node['left'], dict):#如果是字典類型,執(zhí)行操作
  return predict(node['left'], row)
 else:
  return node['left']
 else:
 if isinstance(node['right'], dict):
  return predict(node['right'], row)
 else:
  return node['right']
tree = build_tree(train_set, max_depth, min_size)
predictions = list()
for row in test_set:
 prediction = predict(tree, row)
 predictions.append(prediction)

11.評(píng)價(jià)決策樹(shù)

# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
 folds = cross_validation_split(dataset, n_folds)
 scores = list()
 for fold in folds:
 train_set = list(folds)
 train_set.remove(fold)
 train_set = sum(train_set, [])
 test_set = list()
 for row in fold:
  row_copy = list(row)
  test_set.append(row_copy)
  row_copy[-1] = None
 predicted = algorithm(train_set, test_set, *args)
 actual = [row[-1] for row in fold]
 accuracy = accuracy_metric(actual, predicted)
 scores.append(accuracy)
 return scores 

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

  • Python實(shí)現(xiàn)自定義Jupyter魔法命令

    Python實(shí)現(xiàn)自定義Jupyter魔法命令

    相信大家都用過(guò)?jupyter,也用過(guò)里面的魔法命令,這些魔法命令都以%或者%%開(kāi)頭。用法還是比較簡(jiǎn)單的,但是我們能不能自定義魔法命令呢?本文就來(lái)教大家如何自定義Jupyter魔法命令
    2022-08-08
  • python 日志增量抓取實(shí)現(xiàn)方法

    python 日志增量抓取實(shí)現(xiàn)方法

    下面小編就為大家分享一篇python 日志增量抓取實(shí)現(xiàn)方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2018-04-04
  • python協(xié)程gevent案例 爬取斗魚圖片過(guò)程解析

    python協(xié)程gevent案例 爬取斗魚圖片過(guò)程解析

    這篇文章主要介紹了python協(xié)程gevent案例 爬取斗魚圖片過(guò)程解析,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下
    2019-08-08
  • python shell根據(jù)ip獲取主機(jī)名代碼示例

    python shell根據(jù)ip獲取主機(jī)名代碼示例

    這篇文章主要介紹了python shell根據(jù)ip獲取主機(jī)名代碼示例,涉及用socket模塊和shell中hostname命令獲取等相關(guān)內(nèi)容,具有一定參考價(jià)值,需要的朋友可以了解下。
    2017-11-11
  • python基礎(chǔ)之模塊的導(dǎo)入

    python基礎(chǔ)之模塊的導(dǎo)入

    這篇文章主要介紹了python模塊的導(dǎo)入,實(shí)例分析了Python中返回一個(gè)返回值與多個(gè)返回值的方法,需要的朋友可以參考下
    2021-10-10
  • PyQt編程之如何在屏幕中央顯示窗體的實(shí)例

    PyQt編程之如何在屏幕中央顯示窗體的實(shí)例

    今天小編就為大家分享一篇PyQt編程之如何在屏幕中央顯示窗體的實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2019-06-06
  • 利用Python編寫本地音樂(lè)播放器

    利用Python編寫本地音樂(lè)播放器

    這篇文章主要介紹了利用Python編寫本地音樂(lè)播放器,主要以分享完整源碼展開(kāi)文章內(nèi)容,具有一的參考價(jià)值,需要的小伙伴可以參考一下
    2022-03-03
  • 如何完美的建立一個(gè)python項(xiàng)目

    如何完美的建立一個(gè)python項(xiàng)目

    在本篇文章里小編給大家整理了關(guān)于如何完美的建立一個(gè)python項(xiàng)目的相關(guān)知識(shí)點(diǎn)內(nèi)容,需要的朋友們可以學(xué)習(xí)下。
    2020-10-10
  • Python變量定義的簡(jiǎn)單使用介紹

    Python變量定義的簡(jiǎn)單使用介紹

    這篇文章主要介紹了Python變量定義的簡(jiǎn)單使用介紹,文章圍繞主題展開(kāi)詳細(xì)的內(nèi)容介紹,具有一定的參考價(jià)值,需要的小伙伴可以參考一下
    2022-08-08
  • python ftfy庫(kù)處理金融方面文件編碼錯(cuò)誤實(shí)例詳解

    python ftfy庫(kù)處理金融方面文件編碼錯(cuò)誤實(shí)例詳解

    這篇文章主要為大家介紹了使用python ftfy庫(kù)處理金融方面文件編碼錯(cuò)誤實(shí)例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪
    2024-01-01

最新評(píng)論