python+matplotlib實(shí)現(xiàn)禮盒柱狀圖實(shí)例代碼
演示結(jié)果:
完整代碼:
import matplotlib.pyplot as plt import numpy as np from matplotlib.image import BboxImage from matplotlib._png import read_png import matplotlib.colors from matplotlib.cbook import get_sample_data class RibbonBox(object): original_image = read_png(get_sample_data("Minduka_Present_Blue_Pack.png", asfileobj=False)) cut_location = 70 b_and_h = original_image[:, :, 2] color = original_image[:, :, 2] - original_image[:, :, 0] alpha = original_image[:, :, 3] nx = original_image.shape[1] def __init__(self, color): rgb = matplotlib.colors.to_rgba(color)[:3] im = np.empty(self.original_image.shape, self.original_image.dtype) im[:, :, :3] = self.b_and_h[:, :, np.newaxis] im[:, :, :3] -= self.color[:, :, np.newaxis]*(1. - np.array(rgb)) im[:, :, 3] = self.alpha self.im = im def get_stretched_image(self, stretch_factor): stretch_factor = max(stretch_factor, 1) ny, nx, nch = self.im.shape ny2 = int(ny*stretch_factor) stretched_image = np.empty((ny2, nx, nch), self.im.dtype) cut = self.im[self.cut_location, :, :] stretched_image[:, :, :] = cut stretched_image[:self.cut_location, :, :] = \ self.im[:self.cut_location, :, :] stretched_image[-(ny - self.cut_location):, :, :] = \ self.im[-(ny - self.cut_location):, :, :] self._cached_im = stretched_image return stretched_image class RibbonBoxImage(BboxImage): zorder = 1 def __init__(self, bbox, color, cmap=None, norm=None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample=False, **kwargs ): BboxImage.__init__(self, bbox, cmap=cmap, norm=norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs ) self._ribbonbox = RibbonBox(color) self._cached_ny = None def draw(self, renderer, *args, **kwargs): bbox = self.get_window_extent(renderer) stretch_factor = bbox.height / bbox.width ny = int(stretch_factor*self._ribbonbox.nx) if self._cached_ny != ny: arr = self._ribbonbox.get_stretched_image(stretch_factor) self.set_array(arr) self._cached_ny = ny BboxImage.draw(self, renderer, *args, **kwargs) if 1: from matplotlib.transforms import Bbox, TransformedBbox from matplotlib.ticker import ScalarFormatter # Fixing random state for reproducibility np.random.seed(19680801) fig, ax = plt.subplots() years = np.arange(2004, 2009) box_colors = [(0.8, 0.2, 0.2), (0.2, 0.8, 0.2), (0.2, 0.2, 0.8), (0.7, 0.5, 0.8), (0.3, 0.8, 0.7), ] heights = np.random.random(years.shape) * 7000 + 3000 fmt = ScalarFormatter(useOffset=False) ax.xaxis.set_major_formatter(fmt) for year, h, bc in zip(years, heights, box_colors): bbox0 = Bbox.from_extents(year - 0.4, 0., year + 0.4, h) bbox = TransformedBbox(bbox0, ax.transData) rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic") ax.add_artist(rb_patch) ax.annotate(r"%d" % (int(h/100.)*100), (year, h), va="bottom", ha="center") patch_gradient = BboxImage(ax.bbox, interpolation="bicubic", zorder=0.1, ) gradient = np.zeros((2, 2, 4), dtype=float) gradient[:, :, :3] = [1, 1, 0.] gradient[:, :, 3] = [[0.1, 0.3], [0.3, 0.5]] # alpha channel patch_gradient.set_array(gradient) ax.add_artist(patch_gradient) ax.set_xlim(years[0] - 0.5, years[-1] + 0.5) ax.set_ylim(0, 10000) fig.savefig('ribbon_box.png') plt.show()
總結(jié)
以上就是本文關(guān)于python+matplotlib實(shí)現(xiàn)禮盒柱狀圖實(shí)例代碼的全部?jī)?nèi)容,希望對(duì)大家有所幫助。感興趣的朋友可以繼續(xù)參閱本站其他相關(guān)專題,如有不足之處,歡迎留言指出。感謝朋友們對(duì)本站的支持!
相關(guān)文章
Python中functools模塊的常用函數(shù)解析
這篇文章主要介紹了Python中functools模塊的常用函數(shù)解析,分別講解了partial、update_wrapper、wraps、total_ordering的用法,需要的朋友可以參考下2016-06-06python中heapq堆排算法的實(shí)現(xiàn)
這篇文章主要介紹了python中heapq堆排算法的實(shí)現(xiàn),該模塊提供了堆排序算法的實(shí)現(xiàn)。堆是二叉樹,最大堆中父節(jié)點(diǎn)大于或等于兩個(gè)子節(jié)點(diǎn),最小堆父節(jié)點(diǎn)小于或等于兩個(gè)子節(jié)點(diǎn)。下面文章更多詳細(xì)介紹,需要的小伙伴可以參考一下2022-05-05對(duì)python指數(shù)、冪數(shù)擬合curve_fit詳解
今天小編就為大家分享一篇對(duì)python指數(shù)、冪數(shù)擬合curve_fit詳解,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-12-12Python 實(shí)現(xiàn)簡(jiǎn)單的客戶端認(rèn)證
這篇文章主要介紹了Python 如何實(shí)現(xiàn)簡(jiǎn)單的客戶端認(rèn)證,文中講解非常細(xì)致,代碼幫助大家更好的理解和學(xué)習(xí),感興趣的朋友可以了解下2020-07-07python正則表達(dá)式中匹配次數(shù)與貪心問題詳解(+??*)
正則表達(dá)式是一個(gè)特殊的字符序列,它能幫助你方便的檢查一個(gè)字符串是否與某種模式匹配,下面這篇文章主要給大家介紹了關(guān)于python正則表達(dá)式中匹配次數(shù)與貪心問題(+??*)的相關(guān)資料,需要的朋友可以參考下2022-10-10Python實(shí)現(xiàn)加密接口測(cè)試方法步驟詳解
這篇文章主要介紹了Python實(shí)現(xiàn)加密接口測(cè)試方法步驟詳解,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-06-06python調(diào)用另外一個(gè)py文件中函數(shù)的具體步驟
這篇文章主要給大家介紹了關(guān)于python調(diào)用另外一個(gè)py文件中函數(shù)的具體步驟,要在一個(gè)Python文件中調(diào)用其他Python文件中的方法,可以使用Python的模塊導(dǎo)入功能,需要的朋友可以參考下2023-11-11