python機(jī)器學(xué)習(xí)理論與實(shí)戰(zhàn)(六)支持向量機(jī)
上節(jié)基本完成了SVM的理論推倒,尋找最大化間隔的目標(biāo)最終轉(zhuǎn)換成求解拉格朗日乘子變量alpha的求解問(wèn)題,求出了alpha即可求解出SVM的權(quán)重W,有了權(quán)重也就有了最大間隔距離,但是其實(shí)上節(jié)我們有個(gè)假設(shè):就是訓(xùn)練集是線性可分的,這樣求出的alpha在[0,infinite]。但是如果數(shù)據(jù)不是線性可分的呢?此時(shí)我們就要允許部分的樣本可以越過(guò)分類器,這樣優(yōu)化的目標(biāo)函數(shù)就可以不變,只要引入松弛變量
即可,它表示錯(cuò)分類樣本點(diǎn)的代價(jià),分類正確時(shí)它等于0,當(dāng)分類錯(cuò)誤時(shí)
,其中Tn表示樣本的真實(shí)標(biāo)簽-1或者1,回顧上節(jié)中,我們把支持向量到分類器的距離固定為1,因此兩類的支持向量間的距離肯定大于1的,當(dāng)分類錯(cuò)誤時(shí)
肯定也大于1,如(圖五)所示(這里公式和圖標(biāo)序號(hào)都接上一節(jié))。

(圖五)
這樣有了錯(cuò)分類的代價(jià),我們把上節(jié)(公式四)的目標(biāo)函數(shù)上添加上這一項(xiàng)錯(cuò)分類代價(jià),得到如(公式八)的形式:

(公式八)
重復(fù)上節(jié)的拉格朗日乘子法步驟,得到(公式九):

(公式九)
多了一個(gè)Un乘子,當(dāng)然我們的工作就是繼續(xù)求解此目標(biāo)函數(shù),繼續(xù)重復(fù)上節(jié)的步驟,求導(dǎo)得到(公式十):

(公式十)
又因?yàn)閍lpha大于0,而且Un大于0,所以0<alpha<C,為了解釋的清晰一些,我們把(公式九)的KKT條件也發(fā)出來(lái)(上節(jié)中的第三類優(yōu)化問(wèn)題),注意Un是大于等于0:
推導(dǎo)到現(xiàn)在,優(yōu)化函數(shù)的形式基本沒(méi)變,只是多了一項(xiàng)錯(cuò)分類的價(jià)值,但是多了一個(gè)條件,0<alpha<C,C是一個(gè)常數(shù),它的作用就是在允許有錯(cuò)誤分類的情況下,控制最大化間距,它太大了會(huì)導(dǎo)致過(guò)擬合,太小了會(huì)導(dǎo)致欠擬合。接下來(lái)的步驟貌似大家都應(yīng)該知道了,多了一個(gè)C常量的限制條件,然后繼續(xù)用SMO算法優(yōu)化求解二次規(guī)劃,但是我想繼續(xù)把核函數(shù)也一次說(shuō)了,如果樣本線性不可分,引入核函數(shù)后,把樣本映射到高維空間就可以線性可分,如(圖六)所示的線性不可分的樣本:

(圖六)
在(圖六)中,現(xiàn)有的樣本是很明顯線性不可分,但是加入我們利用現(xiàn)有的樣本X之間作些不同的運(yùn)算,如(圖六)右邊所示的樣子,而讓f作為新的樣本(或者說(shuō)新的特征)是不是更好些?現(xiàn)在把X已經(jīng)投射到高維度上去了,但是f我們不知道,此時(shí)核函數(shù)就該上場(chǎng)了,以高斯核函數(shù)為例,在(圖七)中選幾個(gè)樣本點(diǎn)作為基準(zhǔn)點(diǎn),來(lái)利用核函數(shù)計(jì)算f,如(圖七)所示:

(圖七)
這樣就有了f,而核函數(shù)此時(shí)相當(dāng)于對(duì)樣本的X和基準(zhǔn)點(diǎn)一個(gè)度量,做權(quán)重衰減,形成依賴于x的新的特征f,把f放在上面說(shuō)的SVM中繼續(xù)求解alpha,然后得出權(quán)重就行了,原理很簡(jiǎn)單吧,為了顯得有點(diǎn)學(xué)術(shù)味道,把核函數(shù)也做個(gè)樣子加入目標(biāo)函數(shù)中去吧,如(公式十一)所示:

(公式十一)
其中K(Xn,Xm)是核函數(shù),和上面目標(biāo)函數(shù)比沒(méi)有多大的變化,用SMO優(yōu)化求解就行了,代碼如下:
def smoPK(dataMatIn, classLabels, C, toler, maxIter): #full Platt SMO
oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)
iter = 0
entireSet = True; alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
alphaPairsChanged = 0
if entireSet: #go over all
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS)
print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
iter += 1
else:#go over non-bound (railed) alphas
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
iter += 1
if entireSet: entireSet = False #toggle entire set loop
elif (alphaPairsChanged == 0): entireSet = True
print "iteration number: %d" % iter
return oS.b,oS.alphas
下面演示一個(gè)小例子,手寫識(shí)別。
(1)收集數(shù)據(jù):提供文本文件
(2)準(zhǔn)備數(shù)據(jù):基于二值圖像構(gòu)造向量
(3)分析數(shù)據(jù):對(duì)圖像向量進(jìn)行目測(cè)
(4)訓(xùn)練算法:采用兩種不同的核函數(shù),并對(duì)徑向基函數(shù)采用不同的設(shè)置來(lái)運(yùn)行SMO算法。
(5)測(cè)試算法:編寫一個(gè)函數(shù)來(lái)測(cè)試不同的核函數(shù),并計(jì)算錯(cuò)誤率
(6)使用算法:一個(gè)圖像識(shí)別的完整應(yīng)用還需要一些圖像處理的只是,此demo略。
完整代碼如下:
from numpy import *
from time import sleep
def loadDataSet(fileName):
dataMat = []; labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr = line.strip().split('\t')
dataMat.append([float(lineArr[0]), float(lineArr[1])])
labelMat.append(float(lineArr[2]))
return dataMat,labelMat
def selectJrand(i,m):
j=i #we want to select any J not equal to i
while (j==i):
j = int(random.uniform(0,m))
return j
def clipAlpha(aj,H,L):
if aj > H:
aj = H
if L > aj:
aj = L
return aj
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
b = 0; m,n = shape(dataMatrix)
alphas = mat(zeros((m,1)))
iter = 0
while (iter < maxIter):
alphaPairsChanged = 0
for i in range(m):
fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
j = selectJrand(i,m)
fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
Ej = fXj - float(labelMat[j])
alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
if (labelMat[i] != labelMat[j]):
L = max(0, alphas[j] - alphas[i])
H = min(C, C + alphas[j] - alphas[i])
else:
L = max(0, alphas[j] + alphas[i] - C)
H = min(C, alphas[j] + alphas[i])
if L==H: print "L==H"; continue
eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
if eta >= 0: print "eta>=0"; continue
alphas[j] -= labelMat[j]*(Ei - Ej)/eta
alphas[j] = clipAlpha(alphas[j],H,L)
if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue
alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
#the update is in the oppostie direction
b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
if (0 < alphas[i]) and (C > alphas[i]): b = b1
elif (0 < alphas[j]) and (C > alphas[j]): b = b2
else: b = (b1 + b2)/2.0
alphaPairsChanged += 1
print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
if (alphaPairsChanged == 0): iter += 1
else: iter = 0
print "iteration number: %d" % iter
return b,alphas
def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
m,n = shape(X)
K = mat(zeros((m,1)))
if kTup[0]=='lin': K = X * A.T #linear kernel
elif kTup[0]=='rbf':
for j in range(m):
deltaRow = X[j,:] - A
K[j] = deltaRow*deltaRow.T
K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
else: raise NameError('Houston We Have a Problem -- \
That Kernel is not recognized')
return K
class optStruct:
def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters
self.X = dataMatIn
self.labelMat = classLabels
self.C = C
self.tol = toler
self.m = shape(dataMatIn)[0]
self.alphas = mat(zeros((self.m,1)))
self.b = 0
self.eCache = mat(zeros((self.m,2))) #first column is valid flag
self.K = mat(zeros((self.m,self.m)))
for i in range(self.m):
self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
def calcEk(oS, k):
fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
Ek = fXk - float(oS.labelMat[k])
return Ek
def selectJ(i, oS, Ei): #this is the second choice -heurstic, and calcs Ej
maxK = -1; maxDeltaE = 0; Ej = 0
oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E
validEcacheList = nonzero(oS.eCache[:,0].A)[0]
if (len(validEcacheList)) > 1:
for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E
if k == i: continue #don't calc for i, waste of time
Ek = calcEk(oS, k)
deltaE = abs(Ei - Ek)
if (deltaE > maxDeltaE):
maxK = k; maxDeltaE = deltaE; Ej = Ek
return maxK, Ej
else: #in this case (first time around) we don't have any valid eCache values
j = selectJrand(i, oS.m)
Ej = calcEk(oS, j)
return j, Ej
def updateEk(oS, k):#after any alpha has changed update the new value in the cache
Ek = calcEk(oS, k)
oS.eCache[k] = [1,Ek]
def innerL(i, oS):
Ei = calcEk(oS, i)
if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L==H: print "L==H"; return 0
eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
if eta >= 0: print "eta>=0"; return 0
oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
updateEk(oS, j) #added this for the Ecache
if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
else: oS.b = (b1 + b2)/2.0
return 1
else: return 0
def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO
oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
iter = 0
entireSet = True; alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
alphaPairsChanged = 0
if entireSet: #go over all
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS)
print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
iter += 1
else:#go over non-bound (railed) alphas
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
iter += 1
if entireSet: entireSet = False #toggle entire set loop
elif (alphaPairsChanged == 0): entireSet = True
print "iteration number: %d" % iter
return oS.b,oS.alphas
def calcWs(alphas,dataArr,classLabels):
X = mat(dataArr); labelMat = mat(classLabels).transpose()
m,n = shape(X)
w = zeros((n,1))
for i in range(m):
w += multiply(alphas[i]*labelMat[i],X[i,:].T)
return w
def testRbf(k1=1.3):
dataArr,labelArr = loadDataSet('testSetRBF.txt')
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
svInd=nonzero(alphas.A>0)[0]
sVs=datMat[svInd] #get matrix of only support vectors
labelSV = labelMat[svInd];
print "there are %d Support Vectors" % shape(sVs)[0]
m,n = shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the training error rate is: %f" % (float(errorCount)/m)
dataArr,labelArr = loadDataSet('testSetRBF2.txt')
errorCount = 0
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
m,n = shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the test error rate is: %f" % (float(errorCount)/m)
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
def loadImages(dirName):
from os import listdir
hwLabels = []
trainingFileList = listdir(dirName) #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
if classNumStr == 9: hwLabels.append(-1)
else: hwLabels.append(1)
trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
return trainingMat, hwLabels
def testDigits(kTup=('rbf', 10)):
dataArr,labelArr = loadImages('trainingDigits')
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
svInd=nonzero(alphas.A>0)[0]
sVs=datMat[svInd]
labelSV = labelMat[svInd];
print "there are %d Support Vectors" % shape(sVs)[0]
m,n = shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the training error rate is: %f" % (float(errorCount)/m)
dataArr,labelArr = loadImages('testDigits')
errorCount = 0
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
m,n = shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the test error rate is: %f" % (float(errorCount)/m)
'''''#######********************************
Non-Kernel VErsions below
'''#######********************************
class optStructK:
def __init__(self,dataMatIn, classLabels, C, toler): # Initialize the structure with the parameters
self.X = dataMatIn
self.labelMat = classLabels
self.C = C
self.tol = toler
self.m = shape(dataMatIn)[0]
self.alphas = mat(zeros((self.m,1)))
self.b = 0
self.eCache = mat(zeros((self.m,2))) #first column is valid flag
def calcEkK(oS, k):
fXk = float(multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b
Ek = fXk - float(oS.labelMat[k])
return Ek
def selectJK(i, oS, Ei): #this is the second choice -heurstic, and calcs Ej
maxK = -1; maxDeltaE = 0; Ej = 0
oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E
validEcacheList = nonzero(oS.eCache[:,0].A)[0]
if (len(validEcacheList)) > 1:
for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E
if k == i: continue #don't calc for i, waste of time
Ek = calcEk(oS, k)
deltaE = abs(Ei - Ek)
if (deltaE > maxDeltaE):
maxK = k; maxDeltaE = deltaE; Ej = Ek
return maxK, Ej
else: #in this case (first time around) we don't have any valid eCache values
j = selectJrand(i, oS.m)
Ej = calcEk(oS, j)
return j, Ej
def updateEkK(oS, k):#after any alpha has changed update the new value in the cache
Ek = calcEk(oS, k)
oS.eCache[k] = [1,Ek]
def innerLK(i, oS):
Ei = calcEk(oS, i)
if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L==H: print "L==H"; return 0
eta = 2.0 * oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T
if eta >= 0: print "eta>=0"; return 0
oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
updateEk(oS, j) #added this for the Ecache
if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
else: oS.b = (b1 + b2)/2.0
return 1
else: return 0
def smoPK(dataMatIn, classLabels, C, toler, maxIter): #full Platt SMO
oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)
iter = 0
entireSet = True; alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
alphaPairsChanged = 0
if entireSet: #go over all
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS)
print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
iter += 1
else:#go over non-bound (railed) alphas
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
iter += 1
if entireSet: entireSet = False #toggle entire set loop
elif (alphaPairsChanged == 0): entireSet = True
print "iteration number: %d" % iter
return oS.b,oS.alphas
運(yùn)行結(jié)果如(圖八)所示:

(圖八)
上面代碼有興趣的可以讀讀,用的話,建議使用libsvm。
參考文獻(xiàn):
[1]machine learning in action. PeterHarrington
[2] pattern recognition and machinelearning. Christopher M. Bishop
[3]machine learning.Andrew Ng
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
- python 機(jī)器學(xué)習(xí)之支持向量機(jī)非線性回歸SVR模型
- python機(jī)器學(xué)習(xí)理論與實(shí)戰(zhàn)(五)支持向量機(jī)
- Python機(jī)器學(xué)習(xí)之SVM支持向量機(jī)
- 詳解python 支持向量機(jī)(SVM)算法
- Python 支持向量機(jī)分類器的實(shí)現(xiàn)
- Python中的支持向量機(jī)SVM的使用(附實(shí)例代碼)
- Python SVM(支持向量機(jī))實(shí)現(xiàn)方法完整示例
- Python機(jī)器學(xué)習(xí)應(yīng)用之支持向量機(jī)的分類預(yù)測(cè)篇
相關(guān)文章
pytorch中permute()函數(shù)用法實(shí)例詳解
permute中參數(shù)為張量的維度,將不同維度以不同的維度排列,得到一個(gè)新的張量,在深度學(xué)習(xí)中的主要作用是將特征值聚類,下面這篇文章主要給大家介紹了關(guān)于pytorch中permute()函數(shù)用法的相關(guān)資料,需要的朋友可以參考下2022-04-04
python的pygal模塊繪制反正切函數(shù)圖像方法
在本篇文章中我們給大家整理了關(guān)于如何用python的pygal模塊繪制反正切函數(shù)圖像的知識(shí)點(diǎn)內(nèi)容,有需要的朋友們可以學(xué)習(xí)下。2019-07-07
Python中的二維數(shù)組實(shí)例(list與numpy.array)
下面小編就為大家分享一篇Python中的二維數(shù)組實(shí)例(list與numpy.array),具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2018-04-04
Python基礎(chǔ)之?dāng)?shù)據(jù)類型詳解
python的數(shù)值類型包括整數(shù),浮點(diǎn)數(shù),復(fù)數(shù),集合,小數(shù)和分?jǐn)?shù),布爾值.它們都是python中的數(shù)值類型.如果是有過(guò)其他語(yǔ)言編寫經(jīng)驗(yàn)的人,一定很好奇,浮點(diǎn)數(shù)和小數(shù)的區(qū)別是什么?文中有非常詳細(xì)的介紹,需要的朋友可以參考下2021-06-06
python-xpath獲取html文檔的部分內(nèi)容
這篇文章主要介紹了python-xpath獲取html文檔的部分內(nèi)容,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-03-03
Tensorflow 1.0之后模型文件、權(quán)重?cái)?shù)值的讀取方式
今天小編就為大家分享一篇Tensorflow 1.0之后模型文件、權(quán)重?cái)?shù)值的讀取方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-02-02
python中multiprosessing模塊的Pool類中的apply函數(shù)和apply_async函數(shù)的區(qū)別
這篇文章主要介紹了python中multiprosessing模塊的Pool類中的apply函數(shù)和apply_async函數(shù)的區(qū)別、文章圍繞主題的相關(guān)內(nèi)容展開(kāi)詳細(xì)介紹,具有一定的參考價(jià)值,需要的小伙伴可以參考一下2022-06-06

