欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

學(xué)習(xí)Python3 Dlib19.7進(jìn)行人臉面部識(shí)別

 更新時(shí)間:2018年01月24日 11:17:45   作者:TimeStamp  
本篇文章主要給大家詳細(xì)介紹了Python3利用Dlib19.7進(jìn)行人臉面部識(shí)別的相關(guān)知識(shí),一起學(xué)習(xí)參考下吧。

0.引言

自己在下載dlib官網(wǎng)給的example代碼時(shí),一開(kāi)始不知道怎么使用,在一番摸索之后弄明白怎么使用了;

現(xiàn)分享下 face_detector.py 和 face_landmark_detection.py 這兩個(gè)py的使用方法;

1.簡(jiǎn)介

python:  3.6.3

dlib:    19.7

利用dlib的特征提取器,進(jìn)行人臉 矩形框 的特征提?。骸 ?/p>

dets = dlib.get_frontal_face_detector(img)

利用dlib的68點(diǎn)特征預(yù)測(cè)器,進(jìn)行人臉 68點(diǎn) 特征提?。?/p>

predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
shape = predictor(img, dets[0])

效果:

(a) face_detector.py

b) face_landmark_detection.py

2.py文件功能介紹

face_detector.py :

識(shí)別出圖片文件中一張或多張人臉,并用矩形框框出標(biāo)識(shí)出人臉;

link: http://dlib.net/cnn_face_detector.py.html

face_landmark_detection.py :在face_detector.py的識(shí)別人臉基礎(chǔ)上,識(shí)別出人臉部的具體特征部位:下巴輪廓、眉毛、眼睛、嘴巴,同樣用標(biāo)記標(biāo)識(shí)出面部特征;

link: http://dlib.net/face_landmark_detection.py.html

2.1. face_detector.py

官網(wǎng)給的face_detector.py

#!/usr/bin/python
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
#
#  This example program shows how to find frontal human faces in an image. In
#  particular, it shows how you can take a list of images from the command
#  line and display each on the screen with red boxes overlaid on each human
#  face.
#
#  The examples/faces folder contains some jpg images of people. You can run
#  this program on them and see the detections by executing the
#  following command:
#    ./face_detector.py ../examples/faces/*.jpg
#
#  This face detector is made using the now classic Histogram of Oriented
#  Gradients (HOG) feature combined with a linear classifier, an image
#  pyramid, and sliding window detection scheme. This type of object detector
#  is fairly general and capable of detecting many types of semi-rigid objects
#  in addition to human faces. Therefore, if you are interested in making
#  your own object detectors then read the train_object_detector.py example
#  program. 
#
#
# COMPILING/INSTALLING THE DLIB PYTHON INTERFACE
#  You can install dlib using the command:
#    pip install dlib
#
#  Alternatively, if you want to compile dlib yourself then go into the dlib
#  root folder and run:
#    python setup.py install
#  or
#    python setup.py install --yes USE_AVX_INSTRUCTIONS
#  if you have a CPU that supports AVX instructions, since this makes some
#  things run faster. 
#
#  Compiling dlib should work on any operating system so long as you have
#  CMake and boost-python installed. On Ubuntu, this can be done easily by
#  running the command:
#    sudo apt-get install libboost-python-dev cmake
#
#  Also note that this example requires scikit-image which can be installed
#  via the command:
#    pip install scikit-image
#  Or downloaded from http://scikit-image.org/download.html. 
import sys
import dlib
from skimage import io
detector = dlib.get_frontal_face_detector()
win = dlib.image_window()
for f in sys.argv[1:]:
  print("Processing file: {}".format(f))
  img = io.imread(f)
  # The 1 in the second argument indicates that we should upsample the image
  # 1 time. This will make everything bigger and allow us to detect more
  # faces.
  dets = detector(img, 1)
  print("Number of faces detected: {}".format(len(dets)))
  for i, d in enumerate(dets):
    print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
      i, d.left(), d.top(), d.right(), d.bottom()))
  win.clear_overlay()
  win.set_image(img)
  win.add_overlay(dets)
  dlib.hit_enter_to_continue()
# Finally, if you really want to you can ask the detector to tell you the score
# for each detection. The score is bigger for more confident detections.
# The third argument to run is an optional adjustment to the detection threshold,
# where a negative value will return more detections and a positive value fewer.
# Also, the idx tells you which of the face sub-detectors matched. This can be
# used to broadly identify faces in different orientations.
if (len(sys.argv[1:]) > 0):
  img = io.imread(sys.argv[1])
  dets, scores, idx = detector.run(img, 1, -1)
  for i, d in enumerate(dets):
    print("Detection {}, score: {}, face_type:{}".format(
      d, scores[i], idx[i]))
為了方便理解,修改增加注釋之后的 face_detector.py
import dlib
from skimage import io
# 使用特征提取器frontal_face_detector
detector = dlib.get_frontal_face_detector()
# path是圖片所在路徑
path = "F:/code/python/P_dlib_face/pic/"
img = io.imread(path+"1.jpg")
# 特征提取器的實(shí)例化
dets = detector(img)
print("人臉數(shù):", len(dets))
# 輸出人臉矩形的四個(gè)坐標(biāo)點(diǎn)
for i, d in enumerate(dets):
  print("第", i, "個(gè)人臉d的坐標(biāo):",
     "left:", d.left(),
     "right:", d.right(),
     "top:", d.top(),
     "bottom:", d.bottom())
# 繪制圖片
win = dlib.image_window()
# 清除覆蓋
#win.clear_overlay()
win.set_image(img)
# 將生成的矩陣覆蓋上
win.add_overlay(dets)
# 保持圖像
dlib.hit_enter_to_continue()

對(duì)test.jpg進(jìn)行人臉檢測(cè): 

結(jié)果:

圖片窗口結(jié)果:

輸出結(jié)果:   

人臉數(shù): 1
第 0 個(gè)人臉: left: 79 right: 154 top: 47 bottom: 121
Hit enter to continue

對(duì)于多個(gè)人臉的檢測(cè)結(jié)果:

2.2 face_landmark_detection.py

官網(wǎng)給的 face_detector.py

#!/usr/bin/python
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
#
#  This example program shows how to find frontal human faces in an image and
#  estimate their pose. The pose takes the form of 68 landmarks. These are
#  points on the face such as the corners of the mouth, along the eyebrows, on
#  the eyes, and so forth.
#
#  The face detector we use is made using the classic Histogram of Oriented
#  Gradients (HOG) feature combined with a linear classifier, an image pyramid,
#  and sliding window detection scheme. The pose estimator was created by
#  using dlib's implementation of the paper:
#   One Millisecond Face Alignment with an Ensemble of Regression Trees by
#   Vahid Kazemi and Josephine Sullivan, CVPR 2014
#  and was trained on the iBUG 300-W face landmark dataset (see
#  https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/): 
#   C. Sagonas, E. Antonakos, G, Tzimiropoulos, S. Zafeiriou, M. Pantic. 
#   300 faces In-the-wild challenge: Database and results. 
#   Image and Vision Computing (IMAVIS), Special Issue on Facial Landmark Localisation "In-The-Wild". 2016.
#  You can get the trained model file from:
#  http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2.
#  Note that the license for the iBUG 300-W dataset excludes commercial use.
#  So you should contact Imperial College London to find out if it's OK for
#  you to use this model file in a commercial product.
#
#
#  Also, note that you can train your own models using dlib's machine learning
#  tools. See train_shape_predictor.py to see an example.
#
#
# COMPILING/INSTALLING THE DLIB PYTHON INTERFACE
#  You can install dlib using the command:
#    pip install dlib
#
#  Alternatively, if you want to compile dlib yourself then go into the dlib
#  root folder and run:
#    python setup.py install
#  or
#    python setup.py install --yes USE_AVX_INSTRUCTIONS
#  if you have a CPU that supports AVX instructions, since this makes some
#  things run faster. 
#
#  Compiling dlib should work on any operating system so long as you have
#  CMake and boost-python installed. On Ubuntu, this can be done easily by
#  running the command:
#    sudo apt-get install libboost-python-dev cmake
#
#  Also note that this example requires scikit-image which can be installed
#  via the command:
#    pip install scikit-image
#  Or downloaded from http://scikit-image.org/download.html. 
import sys
import os
import dlib
import glob
from skimage import io
if len(sys.argv) != 3:
  print(
    "Give the path to the trained shape predictor model as the first "
    "argument and then the directory containing the facial images.\n"
    "For example, if you are in the python_examples folder then "
    "execute this program by running:\n"
    "  ./face_landmark_detection.py shape_predictor_68_face_landmarks.dat ../examples/faces\n"
    "You can download a trained facial shape predictor from:\n"
    "  http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2")
  exit()
predictor_path = sys.argv[1]
faces_folder_path = sys.argv[2]
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path)
win = dlib.image_window()

for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
  print("Processing file: {}".format(f))
  img = io.imread(f)

  win.clear_overlay()
  win.set_image(img)

  # Ask the detector to find the bounding boxes of each face. The 1 in the
  # second argument indicates that we should upsample the image 1 time. This
  # will make everything bigger and allow us to detect more faces.
  dets = detector(img, 1)
  print("Number of faces detected: {}".format(len(dets)))
  for k, d in enumerate(dets):
    print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
      k, d.left(), d.top(), d.right(), d.bottom()))
    # Get the landmarks/parts for the face in box d.
    shape = predictor(img, d)
    print("Part 0: {}, Part 1: {} ...".format(shape.part(0),                shape.part(1)))
    # Draw the face landmarks on the screen.
    win.add_overlay(shape)
  win.add_overlay(dets)
  dlib.hit_enter_to_continue()

修改:

繪制兩個(gè)overlay,矩陣框 和 面部特征

import dlib
from skimage import io
# 使用特征提取器frontal_face_detector
detector = dlib.get_frontal_face_detector()
# dlib的68點(diǎn)模型
path_pre = "F:/code/python/P_dlib_face/"
predictor = dlib.shape_predictor(path_pre+"shape_predictor_68_face_landmarks.dat")
# 圖片所在路徑
path_pic = "F:/code/python/P_dlib_face/pic/"
img = io.imread(path_pic+"1.jpg")
# 生成dlib的圖像窗口
win = dlib.image_window()
win.clear_overlay()
win.set_image(img)
# 特征提取器的實(shí)例化
dets = detector(img, 1)
print("人臉數(shù):", len(dets))
for k, d in enumerate(dets):
    print("第", k, "個(gè)人臉d的坐標(biāo):",
       "left:", d.left(),
       "right:", d.right(),
       "top:", d.top(),
       "bottom:", d.bottom())
    # 利用預(yù)測(cè)器預(yù)測(cè)
    shape = predictor(img, d)
    # 繪制面部輪廓
    win.add_overlay(shape)
# 繪制矩陣輪廓
win.add_overlay(dets)
# 保持圖像
dlib.hit_enter_to_continue()

結(jié)果:

人臉數(shù): 1
第 0 個(gè)人臉d的坐標(biāo): left: 79 right: 154 top: 47 bottom: 121

圖片窗口結(jié)果:

藍(lán)色的是繪制的  win.add_overlay(shape)
紅色的是繪制的  win.add_overlay(dets)

對(duì)于多張人臉的檢測(cè)結(jié)果:

官網(wǎng)例程中是利用sys.argv[]讀取命令行輸入,其實(shí)為了方便我把文件路徑寫(xiě)好了,如果對(duì)于sys.argv[]有疑惑,可以參照下面的總結(jié): 

* 關(guān)于sys.argv[]的使用:

( 如果對(duì)于代碼中 sys.argv[] 的使用不了解可以參考這里 )

用來(lái)獲取cmd命令行參數(shù),例如 獲取cmd命令輸入“python test.py XXXXX” 的XXXXX參數(shù),可以用于cmd下讀取用戶輸入的文件路徑;

如果不明白可以在python代碼內(nèi)直接 img = imread("F:/*****/test.jpg") 代替 img = imread(sys.argv[1]) 讀取圖片;

用代碼實(shí)例來(lái)幫助理解:

1.(sys.argv[0],指的是代碼文件本身在的路徑)

test1.py:

import sys
a=sys.argv[0]
print(a) 

cmd input:

python test1.py

cmd output:

test1.py

2.(sys.argv[1],cmd輸入獲取的參數(shù)字符串中,第一個(gè)字符)

test2.py:

import sys
a=sys.argv[1]
print(a) 

cmd input:

python test2.py what is your name

cmd output: 

what

(sys.argv[1:],cmd輸入獲取的參數(shù)字符串中,從第一個(gè)字符開(kāi)始到結(jié)束)

test3.py:

import sys
a=sys.argv[1:]
print(a) 

cmd input: 

python test3.py what is your name

cmd output: 

 [“what”,“is”,“your”,“name”]

 

3.(sys.argv[2],cmd輸入獲取的參數(shù)字符串中,第二個(gè)字符)

test4.py:

import sys
a=sys.argv[2]
print(a) 

cmd input:

python test4.py what is your name

cmd output:

"is"

相關(guān)文章

  • TensorFlow2中提供的幾種處理特征列的方法小結(jié)

    TensorFlow2中提供的幾種處理特征列的方法小結(jié)

    本文主要介紹了TensorFlow2中提供的幾種處理特征列的方法小結(jié),主要介紹了6種方式,具有一定的參考價(jià)值,感興趣的可以了解一下
    2023-09-09
  • Python中可變變量與不可變變量詳解

    Python中可變變量與不可變變量詳解

    這篇文章主要介紹了Python中可變變量與不可變變量,但Python中沒(méi)有指針和引用的概念,導(dǎo)致很多時(shí)候參數(shù)的傳遞和調(diào)用的時(shí)候會(huì)產(chǎn)生疑問(wèn):我到底是復(fù)制了一份新的做操作還是在它指向的內(nèi)存操作?下面我們就帶著疑問(wèn)去閱讀下面文章內(nèi)容吧
    2021-10-10
  • python做反被爬保護(hù)的方法

    python做反被爬保護(hù)的方法

    在本文里小編給大家整理了一篇關(guān)于python做反被爬保護(hù)的方法的方法,由此需求的同學(xué)參考學(xué)習(xí)下。
    2019-07-07
  • 使用Python發(fā)送HTML格式郵件的步驟詳解

    使用Python發(fā)送HTML格式郵件的步驟詳解

    在現(xiàn)代通信中,電子郵件是一種常見(jiàn)的溝通方式,通過(guò)Python編程語(yǔ)言,您可以使用內(nèi)置的庫(kù)來(lái)發(fā)送郵件,并在郵件中嵌入HTML內(nèi)容和圖片,本文將介紹如何使用Python發(fā)送帶有HTML格式內(nèi)容,以及涉及的步驟和代碼示例
    2023-08-08
  • 使用python PIL庫(kù)實(shí)現(xiàn)簡(jiǎn)單驗(yàn)證碼的去噪方法步驟

    使用python PIL庫(kù)實(shí)現(xiàn)簡(jiǎn)單驗(yàn)證碼的去噪方法步驟

    這篇文章主要介紹了使用python PIL庫(kù)實(shí)現(xiàn)簡(jiǎn)單驗(yàn)證碼的去噪方法步驟,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2019-05-05
  • 關(guān)于Python調(diào)用百度語(yǔ)音合成SDK實(shí)現(xiàn)文字轉(zhuǎn)音頻的方法

    關(guān)于Python調(diào)用百度語(yǔ)音合成SDK實(shí)現(xiàn)文字轉(zhuǎn)音頻的方法

    這篇文章主要介紹了關(guān)于Python調(diào)用百度語(yǔ)音合成SDK實(shí)現(xiàn)文字轉(zhuǎn)音頻的方法,AipSpeech是語(yǔ)音合成的Python?SDK客戶端,為使用語(yǔ)音合成的開(kāi)發(fā)人員提供了一系列的交互方法,需要的朋友可以參考下
    2023-07-07
  • 詳解python的super()的作用和原理

    詳解python的super()的作用和原理

    這篇文章主要介紹了python的super()的作用和原理,super(), 在類的繼承里面super()非常常用, 它解決了子類調(diào)用父類方法的一些問(wèn)題, 父類多次被調(diào)用時(shí)只執(zhí)行一次, 優(yōu)化了執(zhí)行邏輯,下面我們就來(lái)詳細(xì)看一下
    2020-10-10
  • Python程序設(shè)計(jì)入門(5)類的使用簡(jiǎn)介

    Python程序設(shè)計(jì)入門(5)類的使用簡(jiǎn)介

    這篇文章主要介紹了Python類的使用,需要的朋友可以參考下
    2014-06-06
  • Python基礎(chǔ)之getpass模塊詳細(xì)介紹

    Python基礎(chǔ)之getpass模塊詳細(xì)介紹

    最近在看Python標(biāo)準(zhǔn)庫(kù)官方文檔的時(shí)候偶然發(fā)現(xiàn)了這個(gè)模塊。仔細(xì)一看內(nèi)容挺少的,只有兩個(gè)主要api,就花了點(diǎn)時(shí)間閱讀了一下源碼,感覺(jué)挺實(shí)用的,在這安利給大家。下面這篇文章主要給大家介紹了關(guān)于Python基礎(chǔ)之getpass模塊的相關(guān)資料,需要的朋友可以參考下。
    2017-08-08
  • Python錯(cuò)誤: SyntaxError: Non-ASCII character解決辦法

    Python錯(cuò)誤: SyntaxError: Non-ASCII character解決辦法

    這篇文章主要介紹了Python錯(cuò)誤: SyntaxError: Non-ASCII character解決辦法的相關(guān)資料,需要的朋友可以參考下
    2017-06-06

最新評(píng)論