學(xué)習(xí)Python3 Dlib19.7進(jìn)行人臉面部識(shí)別
0.引言
自己在下載dlib官網(wǎng)給的example代碼時(shí),一開(kāi)始不知道怎么使用,在一番摸索之后弄明白怎么使用了;
現(xiàn)分享下 face_detector.py 和 face_landmark_detection.py 這兩個(gè)py的使用方法;
1.簡(jiǎn)介
python: 3.6.3
dlib: 19.7
利用dlib的特征提取器,進(jìn)行人臉 矩形框 的特征提?。骸 ?/p>
dets = dlib.get_frontal_face_detector(img)
利用dlib的68點(diǎn)特征預(yù)測(cè)器,進(jìn)行人臉 68點(diǎn) 特征提?。?/p>
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") shape = predictor(img, dets[0])
效果:
(a) face_detector.py
b) face_landmark_detection.py
2.py文件功能介紹
face_detector.py :
識(shí)別出圖片文件中一張或多張人臉,并用矩形框框出標(biāo)識(shí)出人臉;
link: http://dlib.net/cnn_face_detector.py.html
face_landmark_detection.py :在face_detector.py的識(shí)別人臉基礎(chǔ)上,識(shí)別出人臉部的具體特征部位:下巴輪廓、眉毛、眼睛、嘴巴,同樣用標(biāo)記標(biāo)識(shí)出面部特征;
link: http://dlib.net/face_landmark_detection.py.html
2.1. face_detector.py
官網(wǎng)給的face_detector.py
#!/usr/bin/python # The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt # # This example program shows how to find frontal human faces in an image. In # particular, it shows how you can take a list of images from the command # line and display each on the screen with red boxes overlaid on each human # face. # # The examples/faces folder contains some jpg images of people. You can run # this program on them and see the detections by executing the # following command: # ./face_detector.py ../examples/faces/*.jpg # # This face detector is made using the now classic Histogram of Oriented # Gradients (HOG) feature combined with a linear classifier, an image # pyramid, and sliding window detection scheme. This type of object detector # is fairly general and capable of detecting many types of semi-rigid objects # in addition to human faces. Therefore, if you are interested in making # your own object detectors then read the train_object_detector.py example # program. # # # COMPILING/INSTALLING THE DLIB PYTHON INTERFACE # You can install dlib using the command: # pip install dlib # # Alternatively, if you want to compile dlib yourself then go into the dlib # root folder and run: # python setup.py install # or # python setup.py install --yes USE_AVX_INSTRUCTIONS # if you have a CPU that supports AVX instructions, since this makes some # things run faster. # # Compiling dlib should work on any operating system so long as you have # CMake and boost-python installed. On Ubuntu, this can be done easily by # running the command: # sudo apt-get install libboost-python-dev cmake # # Also note that this example requires scikit-image which can be installed # via the command: # pip install scikit-image # Or downloaded from http://scikit-image.org/download.html. import sys import dlib from skimage import io detector = dlib.get_frontal_face_detector() win = dlib.image_window() for f in sys.argv[1:]: print("Processing file: {}".format(f)) img = io.imread(f) # The 1 in the second argument indicates that we should upsample the image # 1 time. This will make everything bigger and allow us to detect more # faces. dets = detector(img, 1) print("Number of faces detected: {}".format(len(dets))) for i, d in enumerate(dets): print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( i, d.left(), d.top(), d.right(), d.bottom())) win.clear_overlay() win.set_image(img) win.add_overlay(dets) dlib.hit_enter_to_continue() # Finally, if you really want to you can ask the detector to tell you the score # for each detection. The score is bigger for more confident detections. # The third argument to run is an optional adjustment to the detection threshold, # where a negative value will return more detections and a positive value fewer. # Also, the idx tells you which of the face sub-detectors matched. This can be # used to broadly identify faces in different orientations. if (len(sys.argv[1:]) > 0): img = io.imread(sys.argv[1]) dets, scores, idx = detector.run(img, 1, -1) for i, d in enumerate(dets): print("Detection {}, score: {}, face_type:{}".format( d, scores[i], idx[i]))
import dlib from skimage import io # 使用特征提取器frontal_face_detector detector = dlib.get_frontal_face_detector() # path是圖片所在路徑 path = "F:/code/python/P_dlib_face/pic/" img = io.imread(path+"1.jpg") # 特征提取器的實(shí)例化 dets = detector(img) print("人臉數(shù):", len(dets)) # 輸出人臉矩形的四個(gè)坐標(biāo)點(diǎn) for i, d in enumerate(dets): print("第", i, "個(gè)人臉d的坐標(biāo):", "left:", d.left(), "right:", d.right(), "top:", d.top(), "bottom:", d.bottom()) # 繪制圖片 win = dlib.image_window() # 清除覆蓋 #win.clear_overlay() win.set_image(img) # 將生成的矩陣覆蓋上 win.add_overlay(dets) # 保持圖像 dlib.hit_enter_to_continue()
對(duì)test.jpg進(jìn)行人臉檢測(cè):
結(jié)果:
圖片窗口結(jié)果:
輸出結(jié)果:
人臉數(shù): 1 第 0 個(gè)人臉: left: 79 right: 154 top: 47 bottom: 121 Hit enter to continue
對(duì)于多個(gè)人臉的檢測(cè)結(jié)果:
2.2 face_landmark_detection.py
官網(wǎng)給的 face_detector.py
#!/usr/bin/python # The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt # # This example program shows how to find frontal human faces in an image and # estimate their pose. The pose takes the form of 68 landmarks. These are # points on the face such as the corners of the mouth, along the eyebrows, on # the eyes, and so forth. # # The face detector we use is made using the classic Histogram of Oriented # Gradients (HOG) feature combined with a linear classifier, an image pyramid, # and sliding window detection scheme. The pose estimator was created by # using dlib's implementation of the paper: # One Millisecond Face Alignment with an Ensemble of Regression Trees by # Vahid Kazemi and Josephine Sullivan, CVPR 2014 # and was trained on the iBUG 300-W face landmark dataset (see # https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/): # C. Sagonas, E. Antonakos, G, Tzimiropoulos, S. Zafeiriou, M. Pantic. # 300 faces In-the-wild challenge: Database and results. # Image and Vision Computing (IMAVIS), Special Issue on Facial Landmark Localisation "In-The-Wild". 2016. # You can get the trained model file from: # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2. # Note that the license for the iBUG 300-W dataset excludes commercial use. # So you should contact Imperial College London to find out if it's OK for # you to use this model file in a commercial product. # # # Also, note that you can train your own models using dlib's machine learning # tools. See train_shape_predictor.py to see an example. # # # COMPILING/INSTALLING THE DLIB PYTHON INTERFACE # You can install dlib using the command: # pip install dlib # # Alternatively, if you want to compile dlib yourself then go into the dlib # root folder and run: # python setup.py install # or # python setup.py install --yes USE_AVX_INSTRUCTIONS # if you have a CPU that supports AVX instructions, since this makes some # things run faster. # # Compiling dlib should work on any operating system so long as you have # CMake and boost-python installed. On Ubuntu, this can be done easily by # running the command: # sudo apt-get install libboost-python-dev cmake # # Also note that this example requires scikit-image which can be installed # via the command: # pip install scikit-image # Or downloaded from http://scikit-image.org/download.html. import sys import os import dlib import glob from skimage import io if len(sys.argv) != 3: print( "Give the path to the trained shape predictor model as the first " "argument and then the directory containing the facial images.\n" "For example, if you are in the python_examples folder then " "execute this program by running:\n" " ./face_landmark_detection.py shape_predictor_68_face_landmarks.dat ../examples/faces\n" "You can download a trained facial shape predictor from:\n" " http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2") exit() predictor_path = sys.argv[1] faces_folder_path = sys.argv[2] detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) win = dlib.image_window() for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")): print("Processing file: {}".format(f)) img = io.imread(f) win.clear_overlay() win.set_image(img) # Ask the detector to find the bounding boxes of each face. The 1 in the # second argument indicates that we should upsample the image 1 time. This # will make everything bigger and allow us to detect more faces. dets = detector(img, 1) print("Number of faces detected: {}".format(len(dets))) for k, d in enumerate(dets): print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( k, d.left(), d.top(), d.right(), d.bottom())) # Get the landmarks/parts for the face in box d. shape = predictor(img, d) print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1))) # Draw the face landmarks on the screen. win.add_overlay(shape) win.add_overlay(dets) dlib.hit_enter_to_continue()
修改:
繪制兩個(gè)overlay,矩陣框 和 面部特征
import dlib from skimage import io # 使用特征提取器frontal_face_detector detector = dlib.get_frontal_face_detector() # dlib的68點(diǎn)模型 path_pre = "F:/code/python/P_dlib_face/" predictor = dlib.shape_predictor(path_pre+"shape_predictor_68_face_landmarks.dat") # 圖片所在路徑 path_pic = "F:/code/python/P_dlib_face/pic/" img = io.imread(path_pic+"1.jpg") # 生成dlib的圖像窗口 win = dlib.image_window() win.clear_overlay() win.set_image(img) # 特征提取器的實(shí)例化 dets = detector(img, 1) print("人臉數(shù):", len(dets)) for k, d in enumerate(dets): print("第", k, "個(gè)人臉d的坐標(biāo):", "left:", d.left(), "right:", d.right(), "top:", d.top(), "bottom:", d.bottom()) # 利用預(yù)測(cè)器預(yù)測(cè) shape = predictor(img, d) # 繪制面部輪廓 win.add_overlay(shape) # 繪制矩陣輪廓 win.add_overlay(dets) # 保持圖像 dlib.hit_enter_to_continue()
結(jié)果:
人臉數(shù): 1 第 0 個(gè)人臉d的坐標(biāo): left: 79 right: 154 top: 47 bottom: 121
圖片窗口結(jié)果:
藍(lán)色的是繪制的 win.add_overlay(shape) 紅色的是繪制的 win.add_overlay(dets)
對(duì)于多張人臉的檢測(cè)結(jié)果:
官網(wǎng)例程中是利用sys.argv[]讀取命令行輸入,其實(shí)為了方便我把文件路徑寫(xiě)好了,如果對(duì)于sys.argv[]有疑惑,可以參照下面的總結(jié):
* 關(guān)于sys.argv[]的使用:
( 如果對(duì)于代碼中 sys.argv[] 的使用不了解可以參考這里 )
用來(lái)獲取cmd命令行參數(shù),例如 獲取cmd命令輸入“python test.py XXXXX” 的XXXXX參數(shù),可以用于cmd下讀取用戶輸入的文件路徑;
如果不明白可以在python代碼內(nèi)直接 img = imread("F:/*****/test.jpg") 代替 img = imread(sys.argv[1]) 讀取圖片;
用代碼實(shí)例來(lái)幫助理解:
1.(sys.argv[0],指的是代碼文件本身在的路徑)
test1.py:
import sys a=sys.argv[0] print(a)
cmd input:
python test1.py
cmd output:
test1.py
2.(sys.argv[1],cmd輸入獲取的參數(shù)字符串中,第一個(gè)字符)
test2.py:
import sys a=sys.argv[1] print(a)
cmd input:
python test2.py what is your name
cmd output:
what
(sys.argv[1:],cmd輸入獲取的參數(shù)字符串中,從第一個(gè)字符開(kāi)始到結(jié)束)
test3.py:
import sys a=sys.argv[1:] print(a)
cmd input:
python test3.py what is your name
cmd output:
[“what”,“is”,“your”,“name”]
3.(sys.argv[2],cmd輸入獲取的參數(shù)字符串中,第二個(gè)字符)
test4.py:
import sys a=sys.argv[2] print(a)
cmd input:
python test4.py what is your name
cmd output:
"is"
- Python 40行代碼實(shí)現(xiàn)人臉識(shí)別功能
- python實(shí)現(xiàn)人臉識(shí)別代碼
- python+opencv實(shí)現(xiàn)的簡(jiǎn)單人臉識(shí)別代碼示例
- python實(shí)現(xiàn)人臉識(shí)別經(jīng)典算法(一) 特征臉?lè)?/a>
- python使用opencv進(jìn)行人臉識(shí)別
- python3+dlib實(shí)現(xiàn)人臉識(shí)別和情緒分析
- 詳解如何用OpenCV + Python 實(shí)現(xiàn)人臉識(shí)別
- Python3結(jié)合Dlib實(shí)現(xiàn)人臉識(shí)別和剪切
- Python3利用Dlib19.7實(shí)現(xiàn)攝像頭人臉識(shí)別的方法
- Python學(xué)習(xí)筆記之圖片人臉檢測(cè)識(shí)別實(shí)例教程
相關(guān)文章
TensorFlow2中提供的幾種處理特征列的方法小結(jié)
本文主要介紹了TensorFlow2中提供的幾種處理特征列的方法小結(jié),主要介紹了6種方式,具有一定的參考價(jià)值,感興趣的可以了解一下2023-09-09使用python PIL庫(kù)實(shí)現(xiàn)簡(jiǎn)單驗(yàn)證碼的去噪方法步驟
這篇文章主要介紹了使用python PIL庫(kù)實(shí)現(xiàn)簡(jiǎn)單驗(yàn)證碼的去噪方法步驟,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-05-05關(guān)于Python調(diào)用百度語(yǔ)音合成SDK實(shí)現(xiàn)文字轉(zhuǎn)音頻的方法
這篇文章主要介紹了關(guān)于Python調(diào)用百度語(yǔ)音合成SDK實(shí)現(xiàn)文字轉(zhuǎn)音頻的方法,AipSpeech是語(yǔ)音合成的Python?SDK客戶端,為使用語(yǔ)音合成的開(kāi)發(fā)人員提供了一系列的交互方法,需要的朋友可以參考下2023-07-07Python程序設(shè)計(jì)入門(5)類的使用簡(jiǎn)介
這篇文章主要介紹了Python類的使用,需要的朋友可以參考下2014-06-06Python基礎(chǔ)之getpass模塊詳細(xì)介紹
最近在看Python標(biāo)準(zhǔn)庫(kù)官方文檔的時(shí)候偶然發(fā)現(xiàn)了這個(gè)模塊。仔細(xì)一看內(nèi)容挺少的,只有兩個(gè)主要api,就花了點(diǎn)時(shí)間閱讀了一下源碼,感覺(jué)挺實(shí)用的,在這安利給大家。下面這篇文章主要給大家介紹了關(guān)于Python基礎(chǔ)之getpass模塊的相關(guān)資料,需要的朋友可以參考下。2017-08-08Python錯(cuò)誤: SyntaxError: Non-ASCII character解決辦法
這篇文章主要介紹了Python錯(cuò)誤: SyntaxError: Non-ASCII character解決辦法的相關(guān)資料,需要的朋友可以參考下2017-06-06