欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

tensorflow中next_batch的具體使用

 更新時間:2018年02月02日 09:03:03   作者:小妖精Fsky  
本篇文章主要介紹了tensorflow中next_batch的具體使用,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧

本文介紹了tensorflow中next_batch的具體使用,分享給大家,具體如下:

此處給出了幾種不同的next_batch方法,該文章只是做出代碼片段的解釋,以備以后查看:

 def next_batch(self, batch_size, fake_data=False):
  """Return the next `batch_size` examples from this data set."""
  if fake_data:
   fake_image = [1] * 784
   if self.one_hot:
    fake_label = [1] + [0] * 9
   else:
    fake_label = 0
   return [fake_image for _ in xrange(batch_size)], [
     fake_label for _ in xrange(batch_size)
   ]
  start = self._index_in_epoch
  self._index_in_epoch += batch_size
  if self._index_in_epoch > self._num_examples: # epoch中的句子下標是否大于所有語料的個數(shù),如果為True,開始新一輪的遍歷
   # Finished epoch
   self._epochs_completed += 1
   # Shuffle the data
   perm = numpy.arange(self._num_examples) # arange函數(shù)用于創(chuàng)建等差數(shù)組
   numpy.random.shuffle(perm) # 打亂
   self._images = self._images[perm]
   self._labels = self._labels[perm]
   # Start next epoch
   start = 0
   self._index_in_epoch = batch_size
   assert batch_size <= self._num_examples
  end = self._index_in_epoch
  return self._images[start:end], self._labels[start:end]

該段代碼摘自mnist.py文件,從代碼第12行start = self._index_in_epoch開始解釋,_index_in_epoch-1是上一次batch個圖片中最后一張圖片的下邊,這次epoch第一張圖片的下標是從 _index_in_epoch開始,最后一張圖片的下標是_index_in_epoch+batch, 如果 _index_in_epoch 大于語料中圖片的個數(shù),表示這個epoch是不合適的,就算是完成了語料的一遍的遍歷,所以應(yīng)該對圖片洗牌然后開始新一輪的語料組成batch開始

def ptb_iterator(raw_data, batch_size, num_steps):
 """Iterate on the raw PTB data.

 This generates batch_size pointers into the raw PTB data, and allows
 minibatch iteration along these pointers.

 Args:
  raw_data: one of the raw data outputs from ptb_raw_data.
  batch_size: int, the batch size.
  num_steps: int, the number of unrolls.

 Yields:
  Pairs of the batched data, each a matrix of shape [batch_size, num_steps].
  The second element of the tuple is the same data time-shifted to the
  right by one.

 Raises:
  ValueError: if batch_size or num_steps are too high.
 """
 raw_data = np.array(raw_data, dtype=np.int32)

 data_len = len(raw_data)
 batch_len = data_len // batch_size #有多少個batch
 data = np.zeros([batch_size, batch_len], dtype=np.int32) # batch_len 有多少個單詞
 for i in range(batch_size): # batch_size 有多少個batch
  data[i] = raw_data[batch_len * i:batch_len * (i + 1)]

 epoch_size = (batch_len - 1) // num_steps # batch_len 是指一個batch中有多少個句子
 #epoch_size = ((len(data) // model.batch_size) - 1) // model.num_steps # // 表示整數(shù)除法
 if epoch_size == 0:
  raise ValueError("epoch_size == 0, decrease batch_size or num_steps")

 for i in range(epoch_size):
  x = data[:, i*num_steps:(i+1)*num_steps]
  y = data[:, i*num_steps+1:(i+1)*num_steps+1]
  yield (x, y)

第三種方式:

  def next(self, batch_size):
    """ Return a batch of data. When dataset end is reached, start over.
    """
    if self.batch_id == len(self.data):
      self.batch_id = 0
    batch_data = (self.data[self.batch_id:min(self.batch_id +
                         batch_size, len(self.data))])
    batch_labels = (self.labels[self.batch_id:min(self.batch_id +
                         batch_size, len(self.data))])
    batch_seqlen = (self.seqlen[self.batch_id:min(self.batch_id +
                         batch_size, len(self.data))])
    self.batch_id = min(self.batch_id + batch_size, len(self.data))
    return batch_data, batch_labels, batch_seqlen

第四種方式:

def batch_iter(sourceData, batch_size, num_epochs, shuffle=True):
  data = np.array(sourceData) # 將sourceData轉(zhuǎn)換為array存儲
  data_size = len(sourceData)
  num_batches_per_epoch = int(len(sourceData) / batch_size) + 1
  for epoch in range(num_epochs):
    # Shuffle the data at each epoch
    if shuffle:
      shuffle_indices = np.random.permutation(np.arange(data_size))
      shuffled_data = sourceData[shuffle_indices]
    else:
      shuffled_data = sourceData

    for batch_num in range(num_batches_per_epoch):
      start_index = batch_num * batch_size
      end_index = min((batch_num + 1) * batch_size, data_size)

      yield shuffled_data[start_index:end_index]

迭代器的用法,具體學(xué)習Python迭代器的用法

另外需要注意的是,前三種方式只是所有語料遍歷一次,而最后一種方法是,所有語料遍歷了num_epochs次

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

  • 如何利用Python模擬GitHub登錄詳解

    如何利用Python模擬GitHub登錄詳解

    這篇文章主要給大家介紹了關(guān)于如何利用Python模擬GitHub登錄的相關(guān)資料,文中通過示例代碼介紹的非常詳細,對大家學(xué)習或者使用Python具有一定的參考學(xué)習價值,需要的朋友們下面來一起學(xué)習學(xué)習吧
    2019-07-07
  • python 實現(xiàn)數(shù)組list 添加、修改、刪除的方法

    python 實現(xiàn)數(shù)組list 添加、修改、刪除的方法

    下面小編就為大家分享一篇python 實現(xiàn)數(shù)組list 添加、修改、刪除的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2018-04-04
  • 解決python3中解壓zip文件是文件名亂碼的問題

    解決python3中解壓zip文件是文件名亂碼的問題

    下面小編就為大家分享一篇解決python3中解壓zip文件是文件名亂碼的問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2018-03-03
  • python實現(xiàn)網(wǎng)站用戶名密碼自動登錄功能

    python實現(xiàn)網(wǎng)站用戶名密碼自動登錄功能

    最近接到這樣的需求通過網(wǎng)頁用戶認證登錄實現(xiàn)上網(wǎng),如何實現(xiàn)網(wǎng)站自動登錄功能呢,接下來小編給大家?guī)砹藀ython實現(xiàn)網(wǎng)站用戶名密碼自動登錄功能,需要的朋友可以參考下
    2019-08-08
  • Python實現(xiàn)選擇排序

    Python實現(xiàn)選擇排序

    選擇法也算是入門的一種排序算法,比起冒泡法,它的方法巧妙了一些,它的出發(fā)點在于“挑”,每次挑選數(shù)組的最值,與前置元素換位,然后繼續(xù)挑選剩余元素的最值并重復(fù)操作。個人認為選擇排序的意義不在于排序本身,而在于挑選和置換的方法,對于一些問題很有幫助。
    2017-06-06
  • 詳解django中Template語言

    詳解django中Template語言

    Django是一個開放源代碼的Web應(yīng)用框架,由Python寫成。這篇文章給大家介紹django中Template語言,本文給大家介紹的非常詳細,具有一定的參考借鑒價值,需要的朋友參考下吧
    2020-02-02
  • 淺談numpy數(shù)組中冒號和負號的含義

    淺談numpy數(shù)組中冒號和負號的含義

    下面小編就為大家分享一篇淺談numpy數(shù)組中冒號和負號的含義,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2018-04-04
  • 深入理解python中if?__name__?==?‘__main__‘

    深入理解python中if?__name__?==?‘__main__‘

    很多python的文件中會有語句if?__name=='__main__':,一直不太明白,最近查閱了一下資料,現(xiàn)在明白,本文就來深入理解一下,感興趣的可以了解一下
    2023-08-08
  • python編程使用協(xié)程并發(fā)的優(yōu)缺點

    python編程使用協(xié)程并發(fā)的優(yōu)缺點

    協(xié)程是一種用戶態(tài)的輕量級線程,又稱微線程。這篇文章主要介紹了python編程使用協(xié)程并發(fā)的優(yōu)缺點,感興趣的朋友跟隨小編一起看看吧
    2018-09-09
  • 人工智能學(xué)習PyTorch實現(xiàn)CNN卷積層及nn.Module類示例分析

    人工智能學(xué)習PyTorch實現(xiàn)CNN卷積層及nn.Module類示例分析

    這篇文章主要為大家介紹了人工智能學(xué)習PyTorch實現(xiàn)CNN卷積層及nn.Module類示例分析,有需要的朋友可以借鑒參考下,希望能夠有所幫助
    2021-11-11

最新評論