tensorflow中next_batch的具體使用
本文介紹了tensorflow中next_batch的具體使用,分享給大家,具體如下:
此處給出了幾種不同的next_batch方法,該文章只是做出代碼片段的解釋,以備以后查看:
def next_batch(self, batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1] * 784 if self.one_hot: fake_label = [1] + [0] * 9 else: fake_label = 0 return [fake_image for _ in xrange(batch_size)], [ fake_label for _ in xrange(batch_size) ] start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # epoch中的句子下標是否大于所有語料的個數(shù),如果為True,開始新一輪的遍歷 # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) # arange函數(shù)用于創(chuàng)建等差數(shù)組 numpy.random.shuffle(perm) # 打亂 self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end]
該段代碼摘自mnist.py文件,從代碼第12行start = self._index_in_epoch開始解釋,_index_in_epoch-1是上一次batch個圖片中最后一張圖片的下邊,這次epoch第一張圖片的下標是從 _index_in_epoch開始,最后一張圖片的下標是_index_in_epoch+batch, 如果 _index_in_epoch 大于語料中圖片的個數(shù),表示這個epoch是不合適的,就算是完成了語料的一遍的遍歷,所以應(yīng)該對圖片洗牌然后開始新一輪的語料組成batch開始
def ptb_iterator(raw_data, batch_size, num_steps): """Iterate on the raw PTB data. This generates batch_size pointers into the raw PTB data, and allows minibatch iteration along these pointers. Args: raw_data: one of the raw data outputs from ptb_raw_data. batch_size: int, the batch size. num_steps: int, the number of unrolls. Yields: Pairs of the batched data, each a matrix of shape [batch_size, num_steps]. The second element of the tuple is the same data time-shifted to the right by one. Raises: ValueError: if batch_size or num_steps are too high. """ raw_data = np.array(raw_data, dtype=np.int32) data_len = len(raw_data) batch_len = data_len // batch_size #有多少個batch data = np.zeros([batch_size, batch_len], dtype=np.int32) # batch_len 有多少個單詞 for i in range(batch_size): # batch_size 有多少個batch data[i] = raw_data[batch_len * i:batch_len * (i + 1)] epoch_size = (batch_len - 1) // num_steps # batch_len 是指一個batch中有多少個句子 #epoch_size = ((len(data) // model.batch_size) - 1) // model.num_steps # // 表示整數(shù)除法 if epoch_size == 0: raise ValueError("epoch_size == 0, decrease batch_size or num_steps") for i in range(epoch_size): x = data[:, i*num_steps:(i+1)*num_steps] y = data[:, i*num_steps+1:(i+1)*num_steps+1] yield (x, y)
第三種方式:
def next(self, batch_size): """ Return a batch of data. When dataset end is reached, start over. """ if self.batch_id == len(self.data): self.batch_id = 0 batch_data = (self.data[self.batch_id:min(self.batch_id + batch_size, len(self.data))]) batch_labels = (self.labels[self.batch_id:min(self.batch_id + batch_size, len(self.data))]) batch_seqlen = (self.seqlen[self.batch_id:min(self.batch_id + batch_size, len(self.data))]) self.batch_id = min(self.batch_id + batch_size, len(self.data)) return batch_data, batch_labels, batch_seqlen
第四種方式:
def batch_iter(sourceData, batch_size, num_epochs, shuffle=True): data = np.array(sourceData) # 將sourceData轉(zhuǎn)換為array存儲 data_size = len(sourceData) num_batches_per_epoch = int(len(sourceData) / batch_size) + 1 for epoch in range(num_epochs): # Shuffle the data at each epoch if shuffle: shuffle_indices = np.random.permutation(np.arange(data_size)) shuffled_data = sourceData[shuffle_indices] else: shuffled_data = sourceData for batch_num in range(num_batches_per_epoch): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, data_size) yield shuffled_data[start_index:end_index]
迭代器的用法,具體學(xué)習Python迭代器的用法
另外需要注意的是,前三種方式只是所有語料遍歷一次,而最后一種方法是,所有語料遍歷了num_epochs次
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
python 實現(xiàn)數(shù)組list 添加、修改、刪除的方法
下面小編就為大家分享一篇python 實現(xiàn)數(shù)組list 添加、修改、刪除的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-04-04python實現(xiàn)網(wǎng)站用戶名密碼自動登錄功能
最近接到這樣的需求通過網(wǎng)頁用戶認證登錄實現(xiàn)上網(wǎng),如何實現(xiàn)網(wǎng)站自動登錄功能呢,接下來小編給大家?guī)砹藀ython實現(xiàn)網(wǎng)站用戶名密碼自動登錄功能,需要的朋友可以參考下2019-08-08深入理解python中if?__name__?==?‘__main__‘
很多python的文件中會有語句if?__name=='__main__':,一直不太明白,最近查閱了一下資料,現(xiàn)在明白,本文就來深入理解一下,感興趣的可以了解一下2023-08-08python編程使用協(xié)程并發(fā)的優(yōu)缺點
協(xié)程是一種用戶態(tài)的輕量級線程,又稱微線程。這篇文章主要介紹了python編程使用協(xié)程并發(fā)的優(yōu)缺點,感興趣的朋友跟隨小編一起看看吧2018-09-09人工智能學(xué)習PyTorch實現(xiàn)CNN卷積層及nn.Module類示例分析
這篇文章主要為大家介紹了人工智能學(xué)習PyTorch實現(xiàn)CNN卷積層及nn.Module類示例分析,有需要的朋友可以借鑒參考下,希望能夠有所幫助2021-11-11