欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

TensorFlow如何實(shí)現(xiàn)反向傳播

 更新時(shí)間:2018年02月06日 13:43:29   作者:lilongsy  
這篇文章主要為大家詳細(xì)介紹了TensorFlow如何實(shí)現(xiàn)反向傳播,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下

使用TensorFlow的一個(gè)優(yōu)勢(shì)是,它可以維護(hù)操作狀態(tài)和基于反向傳播自動(dòng)地更新模型變量。
TensorFlow通過計(jì)算圖來更新變量和最小化損失函數(shù)來反向傳播誤差的。這步將通過聲明優(yōu)化函數(shù)(optimization function)來實(shí)現(xiàn)。一旦聲明好優(yōu)化函數(shù),TensorFlow將通過它在所有的計(jì)算圖中解決反向傳播的項(xiàng)。當(dāng)我們傳入數(shù)據(jù),最小化損失函數(shù),TensorFlow會(huì)在計(jì)算圖中根據(jù)狀態(tài)相應(yīng)的調(diào)節(jié)變量。

回歸算法的例子從均值為1、標(biāo)準(zhǔn)差為0.1的正態(tài)分布中抽樣隨機(jī)數(shù),然后乘以變量A,損失函數(shù)為L2正則損失函數(shù)。理論上,A的最優(yōu)值是10,因?yàn)樯傻臉永龜?shù)據(jù)均值是1。

二個(gè)例子是一個(gè)簡單的二值分類算法。從兩個(gè)正態(tài)分布(N(-1,1)和N(3,1))生成100個(gè)數(shù)。所有從正態(tài)分布N(-1,1)生成的數(shù)據(jù)標(biāo)為目標(biāo)類0;從正態(tài)分布N(3,1)生成的數(shù)據(jù)標(biāo)為目標(biāo)類1,模型算法通過sigmoid函數(shù)將這些生成的數(shù)據(jù)轉(zhuǎn)換成目標(biāo)類數(shù)據(jù)。換句話講,模型算法是sigmoid(x+A),其中,A是要擬合的變量,理論上A=-1。假設(shè),兩個(gè)正態(tài)分布的均值分別是m1和m2,則達(dá)到A的取值時(shí),它們通過-(m1+m2)/2轉(zhuǎn)換成到0等距的值。后面將會(huì)在TensorFlow中見證怎樣取到相應(yīng)的值。

同時(shí),指定一個(gè)合適的學(xué)習(xí)率對(duì)機(jī)器學(xué)習(xí)算法的收斂是有幫助的。優(yōu)化器類型也需要指定,前面的兩個(gè)例子會(huì)使用標(biāo)準(zhǔn)梯度下降法,它在TensorFlow中的實(shí)現(xiàn)是GradientDescentOptimizer()函數(shù)。

# 反向傳播
#----------------------------------
#
# 以下Python函數(shù)主要是展示回歸和分類模型的反向傳播

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()

# 創(chuàng)建計(jì)算圖會(huì)話
sess = tf.Session()

# 回歸算法的例子:
# We will create sample data as follows:
# x-data: 100 random samples from a normal ~ N(1, 0.1)
# target: 100 values of the value 10.
# We will fit the model:
# x-data * A = target
# Theoretically, A = 10.

# 生成數(shù)據(jù),創(chuàng)建占位符和變量A
x_vals = np.random.normal(1, 0.1, 100)
y_vals = np.repeat(10., 100)
x_data = tf.placeholder(shape=[1], dtype=tf.float32)
y_target = tf.placeholder(shape=[1], dtype=tf.float32)

# Create variable (one model parameter = A)
A = tf.Variable(tf.random_normal(shape=[1]))

# 增加乘法操作
my_output = tf.multiply(x_data, A)

# 增加L2正則損失函數(shù)
loss = tf.square(my_output - y_target)

# 在運(yùn)行優(yōu)化器之前,需要初始化變量
init = tf.global_variables_initializer()
sess.run(init)

# 聲明變量的優(yōu)化器
my_opt = tf.train.GradientDescentOptimizer(0.02)
train_step = my_opt.minimize(loss)

# 訓(xùn)練算法
for i in range(100):
  rand_index = np.random.choice(100)
  rand_x = [x_vals[rand_index]]
  rand_y = [y_vals[rand_index]]
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  if (i+1)%25==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)))
    print('Loss = ' + str(sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})))

# 分類算法例子
# We will create sample data as follows:
# x-data: sample 50 random values from a normal = N(-1, 1)
#     + sample 50 random values from a normal = N(1, 1)
# target: 50 values of 0 + 50 values of 1.
#     These are essentially 100 values of the corresponding output index
# We will fit the binary classification model:
# If sigmoid(x+A) < 0.5 -> 0 else 1
# Theoretically, A should be -(mean1 + mean2)/2

# 重置計(jì)算圖
ops.reset_default_graph()

# Create graph
sess = tf.Session()

# 生成數(shù)據(jù)
x_vals = np.concatenate((np.random.normal(-1, 1, 50), np.random.normal(3, 1, 50)))
y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 50)))
x_data = tf.placeholder(shape=[1], dtype=tf.float32)
y_target = tf.placeholder(shape=[1], dtype=tf.float32)

# 偏差變量A (one model parameter = A)
A = tf.Variable(tf.random_normal(mean=10, shape=[1]))

# 增加轉(zhuǎn)換操作
# Want to create the operstion sigmoid(x + A)
# Note, the sigmoid() part is in the loss function
my_output = tf.add(x_data, A)

# 由于指定的損失函數(shù)期望批量數(shù)據(jù)增加一個(gè)批量數(shù)的維度
# 這里使用expand_dims()函數(shù)增加維度
my_output_expanded = tf.expand_dims(my_output, 0)
y_target_expanded = tf.expand_dims(y_target, 0)

# 初始化變量A
init = tf.global_variables_initializer()
sess.run(init)

# 聲明損失函數(shù) 交叉熵(cross entropy)
xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output_expanded, labels=y_target_expanded)

# 增加一個(gè)優(yōu)化器函數(shù) 讓TensorFlow知道如何更新和偏差變量
my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(xentropy)

# 迭代
for i in range(1400):
  rand_index = np.random.choice(100)
  rand_x = [x_vals[rand_index]]
  rand_y = [y_vals[rand_index]]

  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  if (i+1)%200==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)))
    print('Loss = ' + str(sess.run(xentropy, feed_dict={x_data: rand_x, y_target: rand_y})))

# 評(píng)估預(yù)測
predictions = []
for i in range(len(x_vals)):
  x_val = [x_vals[i]]
  prediction = sess.run(tf.round(tf.sigmoid(my_output)), feed_dict={x_data: x_val})
  predictions.append(prediction[0])

accuracy = sum(x==y for x,y in zip(predictions, y_vals))/100.
print('最終精確度 = ' + str(np.round(accuracy, 2)))

輸出:

Step #25 A = [ 6.12853956]
Loss = [ 16.45088196]
Step #50 A = [ 8.55680943]
Loss = [ 2.18415046]
Step #75 A = [ 9.50547695]
Loss = [ 5.29813051]
Step #100 A = [ 9.89214897]
Loss = [ 0.34628963]
Step #200 A = [ 3.84576249]
Loss = [[ 0.00083012]]
Step #400 A = [ 0.42345378]
Loss = [[ 0.01165466]]
Step #600 A = [-0.35141727]
Loss = [[ 0.05375391]]
Step #800 A = [-0.74206048]
Loss = [[ 0.05468176]]
Step #1000 A = [-0.89036471]
Loss = [[ 0.19636908]]
Step #1200 A = [-0.90850282]
Loss = [[ 0.00608062]]
Step #1400 A = [-1.09374011]
Loss = [[ 0.11037558]]
最終精確度 = 1.0

以上就是本文的全部內(nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

最新評(píng)論