欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python PyTorch預(yù)訓(xùn)練示例

 更新時(shí)間:2018年02月11日 09:30:38   作者:算法學(xué)習(xí)者  
這篇文章主要介紹了python PyTorch預(yù)訓(xùn)練示例,小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過來看看吧

前言

最近使用PyTorch感覺妙不可言,有種當(dāng)初使用Keras的快感,而且速度還不慢。各種設(shè)計(jì)直接簡(jiǎn)潔,方便研究,比tensorflow的臃腫好多了。今天讓我們來談?wù)凱yTorch的預(yù)訓(xùn)練,主要是自己寫代碼的經(jīng)驗(yàn)以及論壇PyTorch Forums上的一些回答的總結(jié)整理。

直接加載預(yù)訓(xùn)練模型

如果我們使用的模型和原模型完全一樣,那么我們可以直接加載別人訓(xùn)練好的模型:

my_resnet = MyResNet(*args, **kwargs)
my_resnet.load_state_dict(torch.load("my_resnet.pth"))

當(dāng)然這樣的加載方法是基于PyTorch推薦的存儲(chǔ)模型的方法:

torch.save(my_resnet.state_dict(), "my_resnet.pth")

還有第二種加載方法:

my_resnet = torch.load("my_resnet.pth")

加載部分預(yù)訓(xùn)練模型

其實(shí)大多數(shù)時(shí)候我們需要根據(jù)我們的任務(wù)調(diào)節(jié)我們的模型,所以很難保證模型和公開的模型完全一樣,但是預(yù)訓(xùn)練模型的參數(shù)確實(shí)有助于提高訓(xùn)練的準(zhǔn)確率,為了結(jié)合二者的優(yōu)點(diǎn),就需要我們加載部分預(yù)訓(xùn)練模型。

pretrained_dict = model_zoo.load_url(model_urls['resnet152'])
model_dict = model.state_dict()
# 將pretrained_dict里不屬于model_dict的鍵剔除掉
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 更新現(xiàn)有的model_dict
model_dict.update(pretrained_dict)
# 加載我們真正需要的state_dict
model.load_state_dict(model_dict)

因?yàn)樾枰蕹P椭胁黄ヅ涞逆I,也就是層的名字,所以我們的新模型改變了的層需要和原模型對(duì)應(yīng)層的名字不一樣,比如:resnet最后一層的名字是fc(PyTorch中),那么我們修改過的resnet的最后一層就不能取這個(gè)名字,可以叫fc_

微改基礎(chǔ)模型預(yù)訓(xùn)練

對(duì)于改動(dòng)比較大的模型,我們可能需要自己實(shí)現(xiàn)一下再加載別人的預(yù)訓(xùn)練參數(shù)。但是,對(duì)于一些基本模型PyTorch中已經(jīng)有了,而且我只想進(jìn)行一些小的改動(dòng)那么怎么辦呢?難道我又去實(shí)現(xiàn)一遍嗎?當(dāng)然不是。

我們首先看看怎么進(jìn)行微改模型。

微改基礎(chǔ)模型

PyTorch中的torchvision里已經(jīng)有很多常用的模型了,可以直接調(diào)用:

  1. AlexNet
  2. VGG
  3. ResNet
  4. SqueezeNet
  5. DenseNet
import torchvision.models as models

resnet18 = models.resnet18()
alexnet = models.alexnet()
squeezenet = models.squeezenet1_0()
densenet = models.densenet_161()

但是對(duì)于我們的任務(wù)而言有些層并不是直接能用,需要我們微微改一下,比如,resnet最后的全連接層是分1000類,而我們只有21類;又比如,resnet第一層卷積接收的通道是3, 我們可能輸入圖片的通道是4,那么可以通過以下方法修改:

resnet.conv1 = nn.Conv2d(4, 64, kernel_size=7, stride=2, padding=3, bias=False)
resnet.fc = nn.Linear(2048, 21)

簡(jiǎn)單預(yù)訓(xùn)練

模型已經(jīng)改完了,接下來我們就進(jìn)行簡(jiǎn)單預(yù)訓(xùn)練吧。

我們先從torchvision中調(diào)用基本模型,加載預(yù)訓(xùn)練模型,然后,重點(diǎn)來了,將其中的層直接替換為我們需要的層即可:

resnet = torchvision.models.resnet152(pretrained=True)
# 原本為1000類,改為10類
resnet.fc = torch.nn.Linear(2048, 10)

其中使用了pretrained參數(shù),會(huì)直接加載預(yù)訓(xùn)練模型,內(nèi)部實(shí)現(xiàn)和前文提到的加載預(yù)訓(xùn)練的方法一樣。因?yàn)槭窍燃虞d的預(yù)訓(xùn)練參數(shù),相當(dāng)于模型中已經(jīng)有參數(shù)了,所以替換掉最后一層即可。OK!

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

最新評(píng)論