python實現(xiàn)簡單神經(jīng)網(wǎng)絡算法
python實現(xiàn)簡單神經(jīng)網(wǎng)絡算法,供大家參考,具體內(nèi)容如下
python實現(xiàn)二層神經(jīng)網(wǎng)絡
包括輸入層和輸出層
import numpy as np
#sigmoid function
def nonlin(x, deriv = False):
if(deriv == True):
return x*(1-x)
return 1/(1+np.exp(-x))
#input dataset
x = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
#output dataset
y = np.array([[0,0,1,1]]).T
np.random.seed(1)
#init weight value
syn0 = 2*np.random.random((3,1))-1
for iter in xrange(100000):
l0 = x #the first layer,and the input layer
l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer
l1_error = y-l1
l1_delta = l1_error*nonlin(l1,True)
syn0 += np.dot(l0.T, l1_delta)
print "outout after Training:"
print l1
import numpy as np
#sigmoid function
def nonlin(x, deriv = False):
if(deriv == True):
return x*(1-x)
return 1/(1+np.exp(-x))
#input dataset
x = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
#output dataset
y = np.array([[0,0,1,1]]).T
np.random.seed(1)
#init weight value
syn0 = 2*np.random.random((3,1))-1
for iter in xrange(100000):
l0 = x #the first layer,and the input layer
l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer
l1_error = y-l1
l1_delta = l1_error*nonlin(l1,True)
syn0 += np.dot(l0.T, l1_delta)
print "outout after Training:"
print l1
這里,
l0:輸入層
l1:輸出層
syn0:初始權(quán)值
l1_error:誤差
l1_delta:誤差校正系數(shù)
func nonlin:sigmoid函數(shù)

可見迭代次數(shù)越多,預測結(jié)果越接近理想值,當時耗時也越長。
python實現(xiàn)三層神經(jīng)網(wǎng)絡
包括輸入層、隱含層和輸出層
import numpy as np
def nonlin(x, deriv = False):
if(deriv == True):
return x*(1-x)
else:
return 1/(1+np.exp(-x))
#input dataset
X = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
#output dataset
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value
for j in range(60000):
l0 = X #the first layer,and the input layer
l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer
l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer
l2_error = y-l2 #the hidden-output layer error
if(j%10000) == 0:
print "Error:"+str(np.mean(l2_error))
l2_delta = l2_error*nonlin(l2,deriv = True)
l1_error = l2_delta.dot(syn1.T) #the first-hidden layer error
l1_delta = l1_error*nonlin(l1,deriv = True)
syn1 += l1.T.dot(l2_delta)
syn0 += l0.T.dot(l1_delta)
print "outout after Training:"
print l2
import numpy as np
def nonlin(x, deriv = False):
if(deriv == True):
return x*(1-x)
else:
return 1/(1+np.exp(-x))
#input dataset
X = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
#output dataset
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value
for j in range(60000):
l0 = X #the first layer,and the input layer
l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer
l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer
l2_error = y-l2 #the hidden-output layer error
if(j%10000) == 0:
print "Error:"+str(np.mean(l2_error))
l2_delta = l2_error*nonlin(l2,deriv = True)
l1_error = l2_delta.dot(syn1.T) #the first-hidden layer error
l1_delta = l1_error*nonlin(l1,deriv = True)
syn1 += l1.T.dot(l2_delta)
syn0 += l0.T.dot(l1_delta)
print "outout after Training:"
print l2
以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
Python中常見的數(shù)據(jù)類型小結(jié)
這篇文章主要對Python中常見的數(shù)據(jù)類型進行了總結(jié)歸納,很有參考借鑒價值,需要的朋友可以參考下2015-08-08
python統(tǒng)計字符串中指定字符出現(xiàn)次數(shù)的方法
這篇文章主要介紹了python統(tǒng)計字符串中指定字符出現(xiàn)次數(shù)的方法,涉及Python中count函數(shù)的使用技巧,非常具有實用價值,需要的朋友可以參考下2015-04-04
OpenCV利用python來實現(xiàn)圖像的直方圖均衡化

