python實(shí)現(xiàn)簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)算法
python實(shí)現(xiàn)簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)算法,供大家參考,具體內(nèi)容如下
python實(shí)現(xiàn)二層神經(jīng)網(wǎng)絡(luò)
包括輸入層和輸出層
import numpy as np #sigmoid function def nonlin(x, deriv = False): if(deriv == True): return x*(1-x) return 1/(1+np.exp(-x)) #input dataset x = np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]]) #output dataset y = np.array([[0,0,1,1]]).T np.random.seed(1) #init weight value syn0 = 2*np.random.random((3,1))-1 for iter in xrange(100000): l0 = x #the first layer,and the input layer l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer l1_error = y-l1 l1_delta = l1_error*nonlin(l1,True) syn0 += np.dot(l0.T, l1_delta) print "outout after Training:" print l1
import numpy as np #sigmoid function def nonlin(x, deriv = False): if(deriv == True): return x*(1-x) return 1/(1+np.exp(-x)) #input dataset x = np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]]) #output dataset y = np.array([[0,0,1,1]]).T np.random.seed(1) #init weight value syn0 = 2*np.random.random((3,1))-1 for iter in xrange(100000): l0 = x #the first layer,and the input layer l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer l1_error = y-l1 l1_delta = l1_error*nonlin(l1,True) syn0 += np.dot(l0.T, l1_delta) print "outout after Training:" print l1
這里,
l0:輸入層
l1:輸出層
syn0:初始權(quán)值
l1_error:誤差
l1_delta:誤差校正系數(shù)
func nonlin:sigmoid函數(shù)
可見(jiàn)迭代次數(shù)越多,預(yù)測(cè)結(jié)果越接近理想值,當(dāng)時(shí)耗時(shí)也越長(zhǎng)。
python實(shí)現(xiàn)三層神經(jīng)網(wǎng)絡(luò)
包括輸入層、隱含層和輸出層
import numpy as np def nonlin(x, deriv = False): if(deriv == True): return x*(1-x) else: return 1/(1+np.exp(-x)) #input dataset X = np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]]) #output dataset y = np.array([[0,1,1,0]]).T syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value for j in range(60000): l0 = X #the first layer,and the input layer l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer l2_error = y-l2 #the hidden-output layer error if(j%10000) == 0: print "Error:"+str(np.mean(l2_error)) l2_delta = l2_error*nonlin(l2,deriv = True) l1_error = l2_delta.dot(syn1.T) #the first-hidden layer error l1_delta = l1_error*nonlin(l1,deriv = True) syn1 += l1.T.dot(l2_delta) syn0 += l0.T.dot(l1_delta) print "outout after Training:" print l2
import numpy as np def nonlin(x, deriv = False): if(deriv == True): return x*(1-x) else: return 1/(1+np.exp(-x)) #input dataset X = np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]]) #output dataset y = np.array([[0,1,1,0]]).T syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value for j in range(60000): l0 = X #the first layer,and the input layer l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer l2_error = y-l2 #the hidden-output layer error if(j%10000) == 0: print "Error:"+str(np.mean(l2_error)) l2_delta = l2_error*nonlin(l2,deriv = True) l1_error = l2_delta.dot(syn1.T) #the first-hidden layer error l1_delta = l1_error*nonlin(l1,deriv = True) syn1 += l1.T.dot(l2_delta) syn0 += l0.T.dot(l1_delta) print "outout after Training:" print l2
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
- python機(jī)器學(xué)習(xí)之神經(jīng)網(wǎng)絡(luò)(一)
- python實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)回歸預(yù)測(cè)模型
- 用Python實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)(附代碼)
- Python利用神經(jīng)網(wǎng)絡(luò)解決非線性回歸問(wèn)題實(shí)例詳解
- python機(jī)器學(xué)習(xí)之神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)
- Python深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)殘差塊
相關(guān)文章
Python中常見(jiàn)的數(shù)據(jù)類型小結(jié)
這篇文章主要對(duì)Python中常見(jiàn)的數(shù)據(jù)類型進(jìn)行了總結(jié)歸納,很有參考借鑒價(jià)值,需要的朋友可以參考下2015-08-08python統(tǒng)計(jì)字符串中指定字符出現(xiàn)次數(shù)的方法
這篇文章主要介紹了python統(tǒng)計(jì)字符串中指定字符出現(xiàn)次數(shù)的方法,涉及Python中count函數(shù)的使用技巧,非常具有實(shí)用價(jià)值,需要的朋友可以參考下2015-04-04Python簡(jiǎn)單爬蟲(chóng)導(dǎo)出CSV文件的實(shí)例講解
今天小編就為大家分享一篇Python簡(jiǎn)單爬蟲(chóng)導(dǎo)出CSV文件的實(shí)例講解,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2018-07-07使用Keras實(shí)現(xiàn)Tensor的相乘和相加代碼
這篇文章主要介紹了使用Keras實(shí)現(xiàn)Tensor的相乘和相加代碼,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-06-06

OpenCV利用python來(lái)實(shí)現(xiàn)圖像的直方圖均衡化