tensorflow識(shí)別自己手寫(xiě)數(shù)字
tensorflow作為google開(kāi)源的項(xiàng)目,現(xiàn)在趕超了caffe,好像成為最受歡迎的深度學(xué)習(xí)框架。確實(shí)在編寫(xiě)的時(shí)候更能感受到代碼的真實(shí)存在,這點(diǎn)和caffe不同,caffe通過(guò)編寫(xiě)配置文件進(jìn)行網(wǎng)絡(luò)的生成。環(huán)境tensorflow是0.10的版本,注意其他版本有的語(yǔ)句會(huì)有錯(cuò)誤,這是tensorflow版本之間的兼容問(wèn)題。
還需要安裝PIL:pip install Pillow
圖片的格式:
– 圖像標(biāo)準(zhǔn)化,可安裝在20×20像素的框內(nèi),同時(shí)保留其長(zhǎng)寬比。
– 圖片都集中在一個(gè)28×28的圖像中。
– 像素以列為主進(jìn)行排序。像素值0到255,0表示背景(白色),255表示前景(黑色)。
創(chuàng)建一個(gè).png的文件,背景是白色的,手寫(xiě)的字體是黑色的,
下面是數(shù)據(jù)測(cè)試的代碼,一個(gè)兩層的卷積神經(jīng)網(wǎng),然后用save進(jìn)行模型的保存。
# coding: UTF-8
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import input_data
'''''
得到數(shù)據(jù)
'''
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
training = mnist.train.images
trainlable = mnist.train.labels
testing = mnist.test.images
testlabel = mnist.test.labels
print ("MNIST loaded")
# 獲取交互式的方式
sess = tf.InteractiveSession()
# 初始化變量
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
'''''
生成權(quán)重函數(shù),其中shape是數(shù)據(jù)的形狀
'''
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
'''''
生成偏執(zhí)項(xiàng) 其中shape是數(shù)據(jù)形狀
'''
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# 保存網(wǎng)絡(luò)訓(xùn)練的參數(shù)
saver = tf.train.Saver()
sess.run(tf.initialize_all_variables())
for i in range(8000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print "step %d, training accuracy %g"%(i, train_accuracy)
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
save_path = saver.save(sess, "model_mnist.ckpt")
print("Model saved in life:", save_path)
print "test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
其中input_data.py如下代碼,是進(jìn)行mnist數(shù)據(jù)集的下載的:代碼是由mnist數(shù)據(jù)集提供的官方下載的版本。
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,
dtype=tf.float32):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels,
dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets
然后進(jìn)行代碼的測(cè)試:
# import modules
import sys
import tensorflow as tf
from PIL import Image, ImageFilter
def predictint(imvalue):
"""
This function returns the predicted integer.
The imput is the pixel values from the imageprepare() function.
"""
# Define the model (same as when creating the model file)
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
init_op = tf.initialize_all_variables()
saver = tf.train.Saver()
"""
Load the model_mnist.ckpt file
file is stored in the same directory as this python script is started
Use the model to predict the integer. Integer is returend as list.
Based on the documentatoin at
https://www.tensorflow.org/versions/master/how_tos/variables/index.html
"""
with tf.Session() as sess:
sess.run(init_op)
saver.restore(sess, "model_mnist.ckpt")
# print ("Model restored.")
prediction = tf.argmax(y_conv, 1)
return prediction.eval(feed_dict={x: [imvalue], keep_prob: 1.0}, session=sess)
def imageprepare(argv):
"""
This function returns the pixel values.
The imput is a png file location.
"""
im = Image.open(argv).convert('L')
width = float(im.size[0])
height = float(im.size[1])
newImage = Image.new('L', (28, 28), (255)) # creates white canvas of 28x28 pixels
if width > height: # check which dimension is bigger
# Width is bigger. Width becomes 20 pixels.
nheight = int(round((20.0 / width * height), 0)) # resize height according to ratio width
if (nheight == 0): # rare case but minimum is 1 pixel
nheigth = 1
# resize and sharpen
img = im.resize((20, nheight), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wtop = int(round(((28 - nheight) / 2), 0)) # caculate horizontal pozition
newImage.paste(img, (4, wtop)) # paste resized image on white canvas
else:
# Height is bigger. Heigth becomes 20 pixels.
nwidth = int(round((20.0 / height * width), 0)) # resize width according to ratio height
if (nwidth == 0): # rare case but minimum is 1 pixel
nwidth = 1
# resize and sharpen
img = im.resize((nwidth, 20), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wleft = int(round(((28 - nwidth) / 2), 0)) # caculate vertical pozition
newImage.paste(img, (wleft, 4)) # paste resized image on white canvas
# newImage.save("sample.png")
tv = list(newImage.getdata()) # get pixel values
# normalize pixels to 0 and 1. 0 is pure white, 1 is pure black.
tva = [(255 - x) * 1.0 / 255.0 for x in tv]
return tva
# print(tva)
def main(argv):
"""
Main function.
"""
imvalue = imageprepare(argv)
predint = predictint(imvalue)
print (predint[0]) # first value in list
if __name__ == "__main__":
main('2.png')
其中我用于測(cè)試的代碼如下:

可以將圖片另存到路徑下面,然后進(jìn)行測(cè)試。
(1)載入我的手寫(xiě)數(shù)字的圖像。
(2)將圖像轉(zhuǎn)換為黑白(模式“L”)
(3)確定原始圖像的尺寸是最大的
(4)調(diào)整圖像的大小,使得最大尺寸(醚的高度及寬度)為20像素,并且以相同的比例最小化尺寸刻度。
(5)銳化圖像。這會(huì)極大地強(qiáng)化結(jié)果。
(6)把圖像粘貼在28×28像素的白色畫(huà)布上。在最大的尺寸上從頂部或側(cè)面居中圖像4個(gè)像素。最大尺寸始終是20個(gè)像素和4 + 20 + 4 = 28,最小尺寸被定位在28和縮放的圖像的新的大小之間差的一半。
(7)獲取新的圖像(畫(huà)布+居中的圖像)的像素值。
(8)歸一化像素值到0和1之間的一個(gè)值(這也在TensorFlow MNIST教程中完成)。其中0是白色的,1是純黑色。從步驟7得到的像素值是與之相反的,其中255是白色的,0黑色,所以數(shù)值必須反轉(zhuǎn)。下述公式包括反轉(zhuǎn)和規(guī)格化(255-X)* 1.0 / 255.0
- Python(TensorFlow框架)實(shí)現(xiàn)手寫(xiě)數(shù)字識(shí)別系統(tǒng)的方法
- TensorFlow深度學(xué)習(xí)之卷積神經(jīng)網(wǎng)絡(luò)CNN
- 基于TensorFlow的CNN實(shí)現(xiàn)Mnist手寫(xiě)數(shù)字識(shí)別
- python tensorflow基于cnn實(shí)現(xiàn)手寫(xiě)數(shù)字識(shí)別
- tensorflow基于CNN實(shí)戰(zhàn)mnist手寫(xiě)識(shí)別(小白必看)
- Python神經(jīng)網(wǎng)絡(luò)TensorFlow基于CNN卷積識(shí)別手寫(xiě)數(shù)字
相關(guān)文章
基于Python編寫(xiě)一個(gè)簡(jiǎn)單的端口掃描器
端口掃描是非常實(shí)用的,不止用在信息安全方面,日常的運(yùn)維也用得到。本文將利用Python編寫(xiě)一個(gè)簡(jiǎn)單的端口掃描器,需要的可以參考一下2022-04-04
pytorch訓(xùn)練時(shí)的顯存占用遞增的問(wèn)題解決
本文主要介紹了pytorch訓(xùn)練時(shí)的顯存占用遞增的問(wèn)題解決,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2023-01-01
使用virtualenv創(chuàng)建Python環(huán)境及PyQT5環(huán)境配置的方法
這篇文章主要介紹了使用virtualenv創(chuàng)建Python環(huán)境及PyQT5環(huán)境配置的方法,本文給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2019-09-09
ruff check文件目錄檢測(cè)--exclude參數(shù)設(shè)置路徑詳解
這篇文章主要為大家介紹了ruff check文件目錄檢測(cè)exclude參數(shù)如何設(shè)置多少路徑詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-10-10
Django框架教程之正則表達(dá)式URL誤區(qū)詳解
正則表達(dá)式對(duì)大家來(lái)說(shuō)應(yīng)該都不陌生,下面這篇文章主要給大家介紹了關(guān)于Django框架教程之正則表達(dá)式URL誤區(qū)的相關(guān)資料,文中通過(guò)示例代碼介紹的非常詳細(xì),需要的朋友可以參考借鑒,下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧。2018-01-01
TensorFlow卷積神經(jīng)網(wǎng)絡(luò)AlexNet實(shí)現(xiàn)示例詳解
這篇文章主要為大家介紹了TensorFlow卷積神經(jīng)網(wǎng)絡(luò)AlexNet實(shí)現(xiàn)示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2021-11-11
Python爬取智聯(lián)招聘數(shù)據(jù)分析師崗位相關(guān)信息的方法
這篇文章主要介紹了Python爬取智聯(lián)招聘數(shù)據(jù)分析師崗位相關(guān)信息的方法,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-08-08

