欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python實現(xiàn)類似比特幣的加密貨幣區(qū)塊鏈的創(chuàng)建與交易實例

 更新時間:2018年03月20日 12:08:40   投稿:wdc  
本文講解了Python實現(xiàn)類似比特幣的加密貨幣區(qū)塊鏈的創(chuàng)建與交易實例方法

雖然有些人認(rèn)為區(qū)塊鏈?zhǔn)且粋€早晚會出現(xiàn)問題的解決方案,但是毫無疑問,這個創(chuàng)新技術(shù)是一個計算機(jī)技術(shù)上的奇跡。那么,究竟什么是區(qū)塊鏈呢?

區(qū)塊鏈

以比特幣(Bitcoin)或其它加密貨幣按時間順序公開地記錄交易的數(shù)字賬本。

更通俗的說,它是一個公開的數(shù)據(jù)庫,新的數(shù)據(jù)存儲在被稱之為區(qū)塊(block)的容器中,并被添加到一個不可變的鏈(chain)中(因此被稱為區(qū)塊鏈(blockchain)),之前添加的數(shù)據(jù)也在該鏈中。對于比特幣或其它加密貨幣來說,這些數(shù)據(jù)就是一組組交易,不過,也可以是其它任何類型的數(shù)據(jù)。

區(qū)塊鏈技術(shù)帶來了全新的、完全數(shù)字化的貨幣,如比特幣和萊特幣(Litecoin),它們并不由任何中心機(jī)構(gòu)管理。這給那些認(rèn)為當(dāng)今的銀行系統(tǒng)是騙局并將最終走向失敗的人帶來了自由。區(qū)塊鏈也革命性地改變了分布式計算的技術(shù)形式,如以太坊(Ethereum)就引入了一種有趣的概念:智能合約(smart contract)。

在這篇文章中,我將用不到 50 行的 Python 2.x 代碼實現(xiàn)一個簡單的區(qū)塊鏈,我把它叫做 SnakeCoin。

不到 50 行代碼的區(qū)塊鏈

我們首先將從定義我們的區(qū)塊是什么開始。在區(qū)塊鏈中,每個區(qū)塊隨同時間戳及可選的索引一同存儲。在 SnakeCoin 中,我們會存儲這兩者。為了確保整個區(qū)塊鏈的完整性,每個區(qū)塊都會有一個自識別的哈希值。如在比特幣中,每個區(qū)塊的哈希是該塊的索引、時間戳、數(shù)據(jù)和前一個區(qū)塊的哈希值等數(shù)據(jù)的加密哈希值。這里提及的“數(shù)據(jù)”可以是任何你想要的數(shù)據(jù)。

import hashlib as hasher

class Block:
 def __init__(self, index, timestamp, data, previous_hash):
  self.index = index
  self.timestamp = timestamp
  self.data = data
  self.previous_hash = previous_hash
  self.hash = self.hash_block()
 
 def hash_block(self):
  sha = hasher.sha256()
  sha.update(str(self.index) + 
        str(self.timestamp) + 
        str(self.data) + 
        str(self.previous_hash))
  return sha.hexdigest()

import hashlib as hasher
 
class Block:
 def __init__(self, index, timestamp, data, previous_hash):
  self.index = index
  self.timestamp = timestamp
  self.data = data
  self.previous_hash = previous_hash
  self.hash = self.hash_block()
 
 def hash_block(self):
  sha = hasher.sha256()
  sha.update(str(self.index) + 
        str(self.timestamp) + 
        str(self.data) + 
        str(self.previous_hash))
  return sha.hexdigest()

現(xiàn)在我們有了區(qū)塊的結(jié)構(gòu)了,不過我們需要創(chuàng)建的是一個區(qū)塊鏈。我們需要把區(qū)塊添加到一個實際的鏈中。如我們之前提到過的,每個區(qū)塊都需要前一個區(qū)塊的信息。但問題是,該區(qū)塊鏈中的第一個區(qū)塊在哪里?好吧,這個第一個區(qū)塊,也稱之為創(chuàng)世區(qū)塊,是一個特別的區(qū)塊。在很多情況下,它是手工添加的,或通過獨特的邏輯添加的。

我們將創(chuàng)建一個函數(shù)來簡單地返回一個創(chuàng)世區(qū)塊解決這個問題。這個區(qū)塊的索引為 0 ,其包含一些任意的數(shù)據(jù)值,其“前一哈希值”參數(shù)也是任意值。

import datetime as date

def create_genesis_block():
 # Manually construct a block with
 # index zero and arbitrary previous hash
 return Block(0, date.datetime.now(), "Genesis Block", "0")

import datetime as date
 
def create_genesis_block():
 # Manually construct a block with
 # index zero and arbitrary previous hash
 return Block(0, date.datetime.now(), "Genesis Block", "0")

現(xiàn)在我們可以創(chuàng)建創(chuàng)世區(qū)塊了,我們需要一個函數(shù)來生成該區(qū)塊鏈中的后繼區(qū)塊。該函數(shù)將獲取鏈中的前一個區(qū)塊作為參數(shù),為要生成的區(qū)塊創(chuàng)建數(shù)據(jù),并用相應(yīng)的數(shù)據(jù)返回新的區(qū)塊。新的區(qū)塊的哈希值來自于之前的區(qū)塊,這樣每個新的區(qū)塊都提升了該區(qū)塊鏈的完整性。如果我們不這樣做,外部參與者就很容易“改變過去”,把我們的鏈替換為他們的新鏈了。這個哈希鏈起到了加密的證明作用,并有助于確保一旦一個區(qū)塊被添加到鏈中,就不能被替換或移除。

def next_block(last_block):
 this_index = last_block.index + 1
 this_timestamp = date.datetime.now()
 this_data = "Hey! I'm block " + str(this_index)
 this_hash = last_block.hash
 return Block(this_index, this_timestamp, this_data, this_hash)

def next_block(last_block):
 this_index = last_block.index + 1
 this_timestamp = date.datetime.now()
 this_data = "Hey! I'm block " + str(this_index)
 this_hash = last_block.hash
 return Block(this_index, this_timestamp, this_data, this_hash)

這就是主要的部分。

現(xiàn)在我們能創(chuàng)建自己的區(qū)塊鏈了!在這里,這個區(qū)塊鏈?zhǔn)且粋€簡單的 Python 列表。其第一個的元素是我們的創(chuàng)世區(qū)塊,我們會添加后繼區(qū)塊。因為 SnakeCoin 是一個極小的區(qū)塊鏈,我們僅僅添加了 20 個區(qū)塊。我們通過循環(huán)來完成它。

# Create the blockchain and add the genesis block
blockchain = [create_genesis_block()]
previous_block = blockchain[0]

# How many blocks should we add to the chain
# after the genesis block
num_of_blocks_to_add = 20

# Add blocks to the chain
for i in range(0, num_of_blocks_to_add):
 block_to_add = next_block(previous_block)
 blockchain.append(block_to_add)
 previous_block = block_to_add
 # Tell everyone about it!
 print "Block #{} has been added to the blockchain!".format(block_to_add.index)
 print "Hash: {}n".format(block_to_add.hash)

# Create the blockchain and add the genesis block
blockchain = [create_genesis_block()]
previous_block = blockchain[0]
 
# How many blocks should we add to the chain
# after the genesis block
num_of_blocks_to_add = 20
 
# Add blocks to the chain
for i in range(0, num_of_blocks_to_add):
 block_to_add = next_block(previous_block)
 blockchain.append(block_to_add)
 previous_block = block_to_add
 # Tell everyone about it!
 print "Block #{} has been added to the blockchain!".format(block_to_add.index)
 print "Hash: {}n".format(block_to_add.hash)

讓我們看看我們的成果:

別擔(dān)心,它將一直添加到 20 個區(qū)塊

很好,我們的區(qū)塊鏈可以工作了。如果你想要在主控臺查看更多的信息,你可以編輯其完整的源代碼并輸出每個區(qū)塊的時間戳或數(shù)據(jù)。

這就是 SnakeCoin 所具有的功能。要使 SnakeCoin 達(dá)到現(xiàn)今的產(chǎn)品級的區(qū)塊鏈的高度,我們需要添加更多的功能,如服務(wù)器層,以在多臺機(jī)器上跟蹤鏈的改變,并通過工作量證明算法(POW)來限制給定時間周期內(nèi)可以添加的區(qū)塊數(shù)量。

如果你想了解更多技術(shù)細(xì)節(jié),你可以在這里查看最初的比特幣白皮書。

讓這個極小區(qū)塊鏈稍微變大些
這個極小的區(qū)塊鏈及其簡單,自然也相對容易完成。但是因其簡單也帶來了一些缺陷。首先,SnakeCoin 僅能運行在單一的一臺機(jī)器上,所以它相距分布式甚遠(yuǎn),更別提去中心化了。其次,區(qū)塊添加到區(qū)塊鏈中的速度同在主機(jī)上創(chuàng)建一個 Python 對象并添加到列表中一樣快。在我們的這個簡單的區(qū)塊鏈中,這不是問題,但是如果我們想讓 SnakeCoin 成為一個實際的加密貨幣,我們就需要控制在給定時間內(nèi)能創(chuàng)建的區(qū)塊(和幣)的數(shù)量。

從現(xiàn)在開始,SnakeCoin 中的“數(shù)據(jù)”將是交易數(shù)據(jù),每個區(qū)塊的“數(shù)據(jù)”字段都將是一些交易信息的列表。接著我們來定義“交易”。每個“交易”是一個 JSON 對象,其記錄了幣的發(fā)送者、接收者和轉(zhuǎn)移的 SnakeCoin 數(shù)量。注:交易信息是 JSON 格式,原因我很快就會說明。

{
 "from": "71238uqirbfh894-random-public-key-a-alkjdflakjfewn204ij",
 "to": "93j4ivnqiopvh43-random-public-key-b-qjrgvnoeirbnferinfo",
 "amount": 3
}


{
 "from": "71238uqirbfh894-random-public-key-a-alkjdflakjfewn204ij",
 "to": "93j4ivnqiopvh43-random-public-key-b-qjrgvnoeirbnferinfo",
 "amount": 3
}

現(xiàn)在我們知道了交易信息看起來的樣子了,我們需要一個辦法來將其加到我們的區(qū)塊鏈網(wǎng)絡(luò)中的一臺計算機(jī)(稱之為節(jié)點)中。要做這個事情,我們會創(chuàng)建一個簡單的 HTTP 服務(wù)器,以便每個用戶都可以讓我們的節(jié)點知道發(fā)生了新的交易。節(jié)點可以接受  POST 請求,請求數(shù)據(jù)為如上的交易信息。這就是為什么交易信息是 JSON 格式的:我們需要它們可以放在請求信息中傳遞給服務(wù)器。

$ pip install flask # 首先安裝 Web 服務(wù)器框架
1
$ pip install flask # 首先安裝 Web 服務(wù)器框架
Python

from flask import Flask
from flask import request
node = Flask(__name__)
# Store the transactions that
# this node has in a list
this_nodes_transactions = []
@node.route('/txion', methods=['POST'])
def transaction():
 if request.method == 'POST':
  # On each new POST request,
  # we extract the transaction data
  new_txion = request.get_json()
  # Then we add the transaction to our list
  this_nodes_transactions.append(new_txion)
  # Because the transaction was successfully
  # submitted, we log it to our console
  print "New transaction"
  print "FROM: {}".format(new_txion['from'])
  print "TO: {}".format(new_txion['to'])
  print "AMOUNT: {}\n".format(new_txion['amount'])
  # Then we let the client know it worked out
  return "Transaction submission successful\n"
node.run()

from flask import Flask
from flask import request
node = Flask(__name__)
# Store the transactions that
# this node has in a list
this_nodes_transactions = []
@node.route('/txion', methods=['POST'])
def transaction():
 if request.method == 'POST':
  # On each new POST request,
  # we extract the transaction data
  new_txion = request.get_json()
  # Then we add the transaction to our list
  this_nodes_transactions.append(new_txion)
  # Because the transaction was successfully
  # submitted, we log it to our console
  print "New transaction"
  print "FROM: {}".format(new_txion['from'])
  print "TO: {}".format(new_txion['to'])
  print "AMOUNT: {}\n".format(new_txion['amount'])
  # Then we let the client know it worked out
  return "Transaction submission successful\n"
node.run()

現(xiàn)在我們有了一種保存用戶彼此發(fā)送 SnakeCoin 的記錄的方式。這就是為什么人們將區(qū)塊鏈稱之為公共的、分布式賬本:所有的交易信息存儲給所有人看,并被存儲在該網(wǎng)絡(luò)的每個節(jié)點上。

但是,有個問題:人們從哪里得到 SnakeCoin 呢?現(xiàn)在還沒有辦法得到,還沒有一個稱之為 SnakeCoin 這樣的東西,因為我們還沒有創(chuàng)建和分發(fā)任何一個幣。要創(chuàng)建新的幣,人們需要“挖”一個新的 SnakeCoin 區(qū)塊。當(dāng)他們成功地挖到了新區(qū)塊,就會創(chuàng)建出一個新的 SnakeCoin ,并獎勵給挖出該區(qū)塊的人(礦工)。一旦挖礦的礦工將 SnakeCoin 發(fā)送給別人,這個幣就流通起來了。

我們不想讓挖新的 SnakeCoin 區(qū)塊太容易,因為這將導(dǎo)致 SnakeCoin 太多了,其價值就變低了;同樣,我們也不想讓它變得太難,因為如果沒有足夠的幣供每個人使用,它們對于我們來說就太昂貴了。為了控制挖新的 SnakeCoin 區(qū)塊的難度,我們會實現(xiàn)一個工作量證明(Proof-of-Work)(PoW)算法。工作量證明基本上就是一個生成某個項目比較難,但是容易驗證(其正確性)的算法。這個項目被稱之為“證明”,聽起來就像是它證明了計算機(jī)執(zhí)行了特定的工作量。

在 SnakeCoin 中,我們創(chuàng)建了一個簡單的 PoW 算法。要創(chuàng)建一個新區(qū)塊,礦工的計算機(jī)需要遞增一個數(shù)字,當(dāng)該數(shù)字能被 9 (“SnakeCoin” 這個單詞的字母數(shù))整除時,這就是最后這個區(qū)塊的證明數(shù)字,就會挖出一個新的 SnakeCoin 區(qū)塊,而該礦工就會得到一個新的 SnakeCoin。

# ...blockchain
# ...Block class definition
miner_address = "q3nf394hjg-random-miner-address-34nf3i4nflkn3oi"
def proof_of_work(last_proof):
 # Create a variable that we will use to find
 # our next proof of work
 incrementor = last_proof + 1
 # Keep incrementing the incrementor until
 # it's equal to a number divisible by 9
 # and the proof of work of the previous
 # block in the chain
 while not (incrementor % 9 == 0 and incrementor % last_proof == 0):
  incrementor += 1
 # Once that number is found,
 # we can return it as a proof
 # of our work
 return incrementor
@node.route('/mine', methods = ['GET'])
def mine():
 # Get the last proof of work
 last_block = blockchain[len(blockchain) - 1]
 last_proof = last_block.data['proof-of-work']
 # Find the proof of work for
 # the current block being mined
 # Note: The program will hang here until a new
 #    proof of work is found
 proof = proof_of_work(last_proof)
 # Once we find a valid proof of work,
 # we know we can mine a block so 
 # we reward the miner by adding a transaction
 this_nodes_transactions.append(
  { "from": "network", "to": miner_address, "amount": 1 }
 )
 # Now we can gather the data needed
 # to create the new block
 new_block_data = {
  "proof-of-work": proof,
  "transactions": list(this_nodes_transactions)
 }
 new_block_index = last_block.index + 1
 new_block_timestamp = this_timestamp = date.datetime.now()
 last_block_hash = last_block.hash
 # Empty transaction list
 this_nodes_transactions[:] = []
 # Now create the
 # new block!
 mined_block = Block(
  new_block_index,
  new_block_timestamp,
  new_block_data,
  last_block_hash
 )
 blockchain.append(mined_block)
 # Let the client know we mined a block
 return json.dumps({
   "index": new_block_index,
   "timestamp": str(new_block_timestamp),
   "data": new_block_data,
   "hash": last_block_hash
 }) + "\n"

# ...blockchain
# ...Block class definition
miner_address = "q3nf394hjg-random-miner-address-34nf3i4nflkn3oi"
def proof_of_work(last_proof):
 # Create a variable that we will use to find
 # our next proof of work
 incrementor = last_proof + 1
 # Keep incrementing the incrementor until
 # it's equal to a number divisible by 9
 # and the proof of work of the previous
 # block in the chain
 while not (incrementor % 9 == 0 and incrementor % last_proof == 0):
  incrementor += 1
 # Once that number is found,
 # we can return it as a proof
 # of our work
 return incrementor
@node.route('/mine', methods = ['GET'])
def mine():
 # Get the last proof of work
 last_block = blockchain[len(blockchain) - 1]
 last_proof = last_block.data['proof-of-work']
 # Find the proof of work for
 # the current block being mined
 # Note: The program will hang here until a new
 #    proof of work is found
 proof = proof_of_work(last_proof)
 # Once we find a valid proof of work,
 # we know we can mine a block so 
 # we reward the miner by adding a transaction
 this_nodes_transactions.append(
  { "from": "network", "to": miner_address, "amount": 1 }
 )
 # Now we can gather the data needed
 # to create the new block
 new_block_data = {
  "proof-of-work": proof,
  "transactions": list(this_nodes_transactions)
 }
 new_block_index = last_block.index + 1
 new_block_timestamp = this_timestamp = date.datetime.now()
 last_block_hash = last_block.hash
 # Empty transaction list
 this_nodes_transactions[:] = []
 # Now create the
 # new block!
 mined_block = Block(
  new_block_index,
  new_block_timestamp,
  new_block_data,
  last_block_hash
 )
 blockchain.append(mined_block)
 # Let the client know we mined a block
 return json.dumps({
   "index": new_block_index,
   "timestamp": str(new_block_timestamp),
   "data": new_block_data,
   "hash": last_block_hash
 }) + "\n"

現(xiàn)在,我們能控制特定的時間段內(nèi)挖到的區(qū)塊數(shù)量,并且我們給了網(wǎng)絡(luò)中的人新的幣,讓他們彼此發(fā)送。但是如我們說的,我們只是在一臺計算機(jī)上做的。如果區(qū)塊鏈?zhǔn)侨ブ行幕模覀冊鯓硬拍艽_保每個節(jié)點都有相同的鏈呢?要做到這一點,我們會使每個節(jié)點都廣播其(保存的)鏈的版本,并允許它們接受其它節(jié)點的鏈。然后,每個節(jié)點會校驗其它節(jié)點的鏈,以便網(wǎng)絡(luò)中每個節(jié)點都能夠達(dá)成最終的鏈的共識。這稱之為共識算法(consensus algorithm)。

我們的共識算法很簡單:如果一個節(jié)點的鏈與其它的節(jié)點的不同(例如有沖突),那么最長的鏈保留,更短的鏈會被刪除。如果我們網(wǎng)絡(luò)上的鏈沒有了沖突,那么就可以繼續(xù)了。

@node.route('/blocks', methods=['GET'])
def get_blocks():
 chain_to_send = blockchain
 # Convert our blocks into dictionaries
 # so we can send them as json objects later
 for block in chain_to_send:
  block_index = str(block.index)
  block_timestamp = str(block.timestamp)
  block_data = str(block.data)
  block_hash = block.hash
  block = {
   "index": block_index,
   "timestamp": block_timestamp,
   "data": block_data,
   "hash": block_hash
  }
 # Send our chain to whomever requested it
 chain_to_send = json.dumps(chain_to_send)
 return chain_to_send
def find_new_chains():
 # Get the blockchains of every
 # other node
 other_chains = []
 for node_url in peer_nodes:
  # Get their chains using a GET request
  block = requests.get(node_url + "/blocks").content
  # Convert the JSON object to a Python dictionary
  block = json.loads(block)
  # Add it to our list
  other_chains.append(block)
 return other_chains
def consensus():
 # Get the blocks from other nodes
 other_chains = find_new_chains()
 # If our chain isn't longest,
 # then we store the longest chain
 longest_chain = blockchain
 for chain in other_chains:
  if len(longest_chain) < len(chain):
   longest_chain = chain
 # If the longest chain wasn't ours,
 # then we set our chain to the longest
 blockchain = longest_chain

@node.route('/blocks', methods=['GET'])
def get_blocks():
 chain_to_send = blockchain
 # Convert our blocks into dictionaries
 # so we can send them as json objects later
 for block in chain_to_send:
  block_index = str(block.index)
  block_timestamp = str(block.timestamp)
  block_data = str(block.data)
  block_hash = block.hash
  block = {
   "index": block_index,
   "timestamp": block_timestamp,
   "data": block_data,
   "hash": block_hash
  }
 # Send our chain to whomever requested it
 chain_to_send = json.dumps(chain_to_send)
 return chain_to_send
def find_new_chains():
 # Get the blockchains of every
 # other node
 other_chains = []
 for node_url in peer_nodes:
  # Get their chains using a GET request
  block = requests.get(node_url + "/blocks").content
  # Convert the JSON object to a Python dictionary
  block = json.loads(block)
  # Add it to our list
  other_chains.append(block)
 return other_chains
def consensus():
 # Get the blocks from other nodes
 other_chains = find_new_chains()
 # If our chain isn't longest,
 # then we store the longest chain
 longest_chain = blockchain
 for chain in other_chains:
  if len(longest_chain) < len(chain):
   longest_chain = chain
 # If the longest chain wasn't ours,
 # then we set our chain to the longest
 blockchain = longest_chain

我們差不多就要完成了。在運行了完整的 SnakeCoin 服務(wù)器代碼之后,在你的終端可以運行如下代碼。(假設(shè)你已經(jīng)安裝了 cCUL)。

1、創(chuàng)建交易

curl "localhost:5000/txion" \
   -H "Content-Type: application/json" \
   -d '{"from": "akjflw", "to":"fjlakdj", "amount": 3}'

curl "localhost:5000/txion" \
   -H "Content-Type: application/json" \
   -d '{"from": "akjflw", "to":"fjlakdj", "amount": 3}'

 

2、挖一個新區(qū)塊

curl localhost:5000/mine

curl localhost:5000/mine

3、 查看結(jié)果。從客戶端窗口,我們可以看到。

對代碼做下美化處理,我們看到挖礦后我們得到的新區(qū)塊的信息:

{
 "index": 2,
 "data": {
  "transactions": [
   {
    "to": "fjlakdj",
    "amount": 3,
    "from": "akjflw"
   },
   {
    "to": "q3nf394hjg-random-miner-address-34nf3i4nflkn3oi",
    "amount": 1,
    "from": "network"
   }
  ],
  "proof-of-work": 36
 },
 "hash": "151edd3ef6af2e7eb8272245cb8ea91b4ecfc3e60af22d8518ef0bba8b4a6b18",
 "timestamp": "2017-07-23 11:23:10.140996"
}

{
 "index": 2,
 "data": {
  "transactions": [
   {
    "to": "fjlakdj",
    "amount": 3,
    "from": "akjflw"
   },
   {
    "to": "q3nf394hjg-random-miner-address-34nf3i4nflkn3oi",
    "amount": 1,
    "from": "network"
   }
  ],
  "proof-of-work": 36
 },
 "hash": "151edd3ef6af2e7eb8272245cb8ea91b4ecfc3e60af22d8518ef0bba8b4a6b18",
 "timestamp": "2017-07-23 11:23:10.140996"
}

大功告成!現(xiàn)在 SnakeCoin 可以運行在多個機(jī)器上,從而創(chuàng)建了一個網(wǎng)絡(luò),而且真實的 SnakeCoin 也能被挖到了。

你可以根據(jù)你的喜好去修改 SnakeCoin 服務(wù)器代碼,并問各種問題了,好了本文暫時講解一下Python實現(xiàn)類似比特幣的加密貨幣區(qū)塊鏈的創(chuàng)建與交易實例。

下一篇我們將討論創(chuàng)建一個 SnakeCoin 錢包,這樣用戶就可以發(fā)送、接收和存儲他們的 SnakeCoin 了

相關(guān)文章

  • python字典各式各樣操作從基礎(chǔ)到高級全面示例詳解

    python字典各式各樣操作從基礎(chǔ)到高級全面示例詳解

    在Python中,字典(Dictionary)是一種強(qiáng)大而靈活的數(shù)據(jù)結(jié)構(gòu),它允許你存儲和檢索鍵值對,本文將深入探討Python中各式各樣的字典操作,包括基本操作、高級操作以及一些實用的技巧,通過全面的示例代碼,將展示如何充分發(fā)揮字典在Python編程中的優(yōu)勢
    2023-12-12
  • python3用PIL把圖片轉(zhuǎn)換為RGB圖片的實例

    python3用PIL把圖片轉(zhuǎn)換為RGB圖片的實例

    今天小編就為大家分享一篇python3用PIL把圖片轉(zhuǎn)換為RGB圖片的實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2019-07-07
  • python函數(shù)超時自動退出的實操方法

    python函數(shù)超時自動退出的實操方法

    在本篇文章里小編給大家整理的是一篇關(guān)于python函數(shù)超時自動退出的實操方法,有需要的朋友們可以學(xué)習(xí)下。
    2020-12-12
  • Python中支持向量機(jī)SVM的使用方法詳解

    Python中支持向量機(jī)SVM的使用方法詳解

    這篇文章主要為大家詳細(xì)介紹了Python中支持向量機(jī)SVM的使用方法,具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2017-12-12
  • python安裝模塊如何通過setup.py安裝(超簡單)

    python安裝模塊如何通過setup.py安裝(超簡單)

    這篇文章主要介紹了python安裝模塊如何通過setup.py安裝,安裝方法其實很簡單,感興趣的朋友跟隨腳本之家小編一起看看吧
    2018-05-05
  • 淺談matplotlib中FigureCanvasXAgg的用法

    淺談matplotlib中FigureCanvasXAgg的用法

    這篇文章主要介紹了淺談matplotlib中FigureCanvasXAgg的用法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2020-06-06
  • python開發(fā)之str.format()用法實例分析

    python開發(fā)之str.format()用法實例分析

    這篇文章主要介紹了python開發(fā)之str.format()用法,結(jié)合實例形式較為詳細(xì)的分析了str.format()函數(shù)的功能,使用方法與相關(guān)注意事項,代碼包含詳盡的注釋說明,需要的朋友可以參考下
    2016-02-02
  • linux環(huán)境下安裝python虛擬環(huán)境及注意事項

    linux環(huán)境下安裝python虛擬環(huán)境及注意事項

    這篇文章主要介紹了linux環(huán)境下安裝python虛擬環(huán)境,本文給大家介紹的非常詳細(xì),具有一定的參考借鑒價值,需要的朋友可以參考下
    2020-01-01
  • Python+Kivy編寫一個乒乓球游戲

    Python+Kivy編寫一個乒乓球游戲

    Kivy 是用 Python 和 Cython 編寫的,基于 OpenGL ES 2,支持各種輸入設(shè)備并擁有豐富的部件庫。本文將教你如何使用 Kivy 編寫一款乒乓球游戲,感興趣的可以動手試一試
    2022-05-05
  • Python3實現(xiàn)簡單可學(xué)習(xí)的手寫體識別(實例講解)

    Python3實現(xiàn)簡單可學(xué)習(xí)的手寫體識別(實例講解)

    下面小編就為大家?guī)硪黄狿ython3實現(xiàn)簡單可學(xué)習(xí)的手寫體識別(實例講解)。小編覺得挺不錯的,現(xiàn)在就分享給大家,也給大家做個參考。一起跟隨小編過來看看吧
    2017-10-10

最新評論