python使用tensorflow深度學(xué)習(xí)識(shí)別驗(yàn)證碼
本文介紹了python使用tensorflow深度學(xué)習(xí)識(shí)別驗(yàn)證碼 ,分享給大家,具體如下:
除了傳統(tǒng)的PIL包處理圖片,然后用pytessert+OCR識(shí)別意外,還可以使用tessorflow訓(xùn)練來(lái)識(shí)別驗(yàn)證碼。
此篇代碼大部分是轉(zhuǎn)載的,只改了很少地方。
代碼是運(yùn)行在linux環(huán)境,tessorflow沒(méi)有支持windows的python 2.7。
gen_captcha.py代碼。
#coding=utf-8 from captcha.image import ImageCaptcha # pip install captcha import numpy as np import matplotlib.pyplot as plt from PIL import Image import random # 驗(yàn)證碼中的字符, 就不用漢字了 number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] ''' number=['0','1','2','3','4','5','6','7','8','9'] alphabet =[] ALPHABET =[] ''' # 驗(yàn)證碼一般都無(wú)視大小寫(xiě);驗(yàn)證碼長(zhǎng)度4個(gè)字符 def random_captcha_text(char_set=number + alphabet + ALPHABET, captcha_size=4): captcha_text = [] for i in range(captcha_size): c = random.choice(char_set) captcha_text.append(c) return captcha_text # 生成字符對(duì)應(yīng)的驗(yàn)證碼 def gen_captcha_text_and_image(): while(1): image = ImageCaptcha() captcha_text = random_captcha_text() captcha_text = ''.join(captcha_text) captcha = image.generate(captcha_text) #image.write(captcha_text, captcha_text + '.jpg') # 寫(xiě)到文件 captcha_image = Image.open(captcha) #captcha_image.show() captcha_image = np.array(captcha_image) if captcha_image.shape==(60,160,3): break return captcha_text, captcha_image if __name__ == '__main__': # 測(cè)試 text, image = gen_captcha_text_and_image() print image gray = np.mean(image, -1) print gray print image.shape print gray.shape f = plt.figure() ax = f.add_subplot(111) ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes) plt.imshow(image) plt.show()
train.py代碼。
#coding=utf-8 from gen_captcha import gen_captcha_text_and_image from gen_captcha import number from gen_captcha import alphabet from gen_captcha import ALPHABET import numpy as np import tensorflow as tf """ text, image = gen_captcha_text_and_image() print "驗(yàn)證碼圖像channel:", image.shape # (60, 160, 3) # 圖像大小 IMAGE_HEIGHT = 60 IMAGE_WIDTH = 160 MAX_CAPTCHA = len(text) print "驗(yàn)證碼文本最長(zhǎng)字符數(shù)", MAX_CAPTCHA # 驗(yàn)證碼最長(zhǎng)4字符; 我全部固定為4,可以不固定. 如果驗(yàn)證碼長(zhǎng)度小于4,用'_'補(bǔ)齊 """ IMAGE_HEIGHT = 60 IMAGE_WIDTH = 160 MAX_CAPTCHA = 4 # 把彩色圖像轉(zhuǎn)為灰度圖像(色彩對(duì)識(shí)別驗(yàn)證碼沒(méi)有什么用) def convert2gray(img): if len(img.shape) > 2: gray = np.mean(img, -1) # 上面的轉(zhuǎn)法較快,正規(guī)轉(zhuǎn)法如下 # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2] # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray else: return img """ cnn在圖像大小是2的倍數(shù)時(shí)性能最高, 如果你用的圖像大小不是2的倍數(shù),可以在圖像邊緣補(bǔ)無(wú)用像素。 np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,)) # 在圖像上補(bǔ)2行,下補(bǔ)3行,左補(bǔ)2行,右補(bǔ)2行 """ # 文本轉(zhuǎn)向量 char_set = number + alphabet + ALPHABET + ['_'] # 如果驗(yàn)證碼長(zhǎng)度小于4, '_'用來(lái)補(bǔ)齊 CHAR_SET_LEN = len(char_set) def text2vec(text): text_len = len(text) if text_len > MAX_CAPTCHA: raise ValueError('驗(yàn)證碼最長(zhǎng)4個(gè)字符') vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN) def char2pos(c): if c == '_': k = 62 return k k = ord(c) - 48 if k > 9: k = ord(c) - 55 if k > 35: k = ord(c) - 61 if k > 61: raise ValueError('No Map') return k for i, c in enumerate(text): #print text idx = i * CHAR_SET_LEN + char2pos(c) #print i,CHAR_SET_LEN,char2pos(c),idx vector[idx] = 1 return vector #print text2vec('1aZ_') # 向量轉(zhuǎn)回文本 def vec2text(vec): char_pos = vec.nonzero()[0] text = [] for i, c in enumerate(char_pos): char_at_pos = i # c/63 char_idx = c % CHAR_SET_LEN if char_idx < 10: char_code = char_idx + ord('0') elif char_idx < 36: char_code = char_idx - 10 + ord('A') elif char_idx < 62: char_code = char_idx - 36 + ord('a') elif char_idx == 62: char_code = ord('_') else: raise ValueError('error') text.append(chr(char_code)) return "".join(text) """ #向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1編碼 每63個(gè)編碼一個(gè)字符,這樣順利有,字符也有 vec = text2vec("F5Sd") text = vec2text(vec) print(text) # F5Sd vec = text2vec("SFd5") text = vec2text(vec) print(text) # SFd5 """ # 生成一個(gè)訓(xùn)練batch def get_next_batch(batch_size=128): batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH]) batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN]) # 有時(shí)生成圖像大小不是(60, 160, 3) def wrap_gen_captcha_text_and_image(): while True: text, image = gen_captcha_text_and_image() if image.shape == (60, 160, 3): return text, image for i in range(batch_size): text, image = wrap_gen_captcha_text_and_image() image = convert2gray(image) batch_x[i, :] = image.flatten() / 255 # (image.flatten()-128)/128 mean為0 batch_y[i, :] = text2vec(text) return batch_x, batch_y #################################################################### X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH]) Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN]) keep_prob = tf.placeholder(tf.float32) # dropout # 定義CNN def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1): x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1]) # w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) # # w_c2_alpha = np.sqrt(2.0/(3*3*32)) # w_c3_alpha = np.sqrt(2.0/(3*3*64)) # w_d1_alpha = np.sqrt(2.0/(8*32*64)) # out_alpha = np.sqrt(2.0/1024) # 3 conv layer w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32])) b_c1 = tf.Variable(b_alpha * tf.random_normal([32])) conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)) conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv1 = tf.nn.dropout(conv1, keep_prob) w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64])) b_c2 = tf.Variable(b_alpha * tf.random_normal([64])) conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2)) conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv2 = tf.nn.dropout(conv2, keep_prob) w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64])) b_c3 = tf.Variable(b_alpha * tf.random_normal([64])) conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3)) conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv3 = tf.nn.dropout(conv3, keep_prob) # Fully connected layer w_d = tf.Variable(w_alpha * tf.random_normal([8 * 32 * 40, 1024])) b_d = tf.Variable(b_alpha * tf.random_normal([1024])) dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]]) dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d)) dense = tf.nn.dropout(dense, keep_prob) w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN])) b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN])) out = tf.add(tf.matmul(dense, w_out), b_out) # out = tf.nn.softmax(out) return out # 訓(xùn)練 def train_crack_captcha_cnn(): import time start_time=time.time() output = crack_captcha_cnn() # loss #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y)) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y)) # 最后一層用來(lái)分類(lèi)的softmax和sigmoid有什么不同? # optimizer 為了加快訓(xùn)練 learning_rate應(yīng)該開(kāi)始大,然后慢慢衰 optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) max_idx_p = tf.argmax(predict, 2) max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) correct_pred = tf.equal(max_idx_p, max_idx_l) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 0 while True: batch_x, batch_y = get_next_batch(64) _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75}) print time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())),step, loss_ # 每100 step計(jì)算一次準(zhǔn)確率 if step % 100 == 0: batch_x_test, batch_y_test = get_next_batch(100) acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.}) print u'***************************************************************第%s次的準(zhǔn)確率為%s'%(step, acc) # 如果準(zhǔn)確率大于50%,保存模型,完成訓(xùn)練 if acc > 0.9: ##我這里設(shè)了0.9,設(shè)得越大訓(xùn)練要花的時(shí)間越長(zhǎng),如果設(shè)得過(guò)于接近1,很難達(dá)到。如果使用cpu,花的時(shí)間很長(zhǎng),cpu占用很高電腦發(fā)燙。 saver.save(sess, "crack_capcha.model", global_step=step) print time.time()-start_time break step += 1 train_crack_captcha_cnn()
測(cè)試代碼:
output = crack_captcha_cnn() saver = tf.train.Saver() sess = tf.Session() saver.restore(sess, tf.train.latest_checkpoint('.')) while(1): text, image = gen_captcha_text_and_image() image = convert2gray(image) image = image.flatten() / 255 predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) text_list = sess.run(predict, feed_dict={X: [image], keep_prob: 1}) predict_text = text_list[0].tolist() vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN) i = 0 for t in predict_text: vector[i * 63 + t] = 1 i += 1 # break print("正確: {} 預(yù)測(cè): {}".format(text, vec2text(vector)))
如果想要快點(diǎn)測(cè)試代碼效果,驗(yàn)證碼的字符不要設(shè)置太多,例如0123這幾個(gè)數(shù)字就可以了。
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Selenium自動(dòng)化測(cè)試工具使用方法匯總
這篇文章主要介紹了Selenium自動(dòng)化測(cè)試工具使用方法匯總,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-06-06python監(jiān)測(cè)當(dāng)前聯(lián)網(wǎng)狀態(tài)并連接的實(shí)例
今天小編就為大家分享一篇python監(jiān)測(cè)當(dāng)前聯(lián)網(wǎng)狀態(tài)并連接的實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2018-12-12python科學(xué)計(jì)算之scipy——optimize用法
今天小編就為大家分享一篇python科學(xué)計(jì)算之scipy——optimize用法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-11-11python 實(shí)現(xiàn)全球IP歸屬地查詢工具
這篇文章主要介紹了python 實(shí)現(xiàn)全球IP歸屬地查詢工具的示例代碼,幫助大家更好的理解和使用python,感興趣的朋友可以了解下2020-12-12解決python中遇到字典里key值為None的情況,取不出來(lái)的問(wèn)題
今天小編就為大家分享一篇解決python中遇到字典里key值為None的情況,取不出來(lái)的問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2018-10-10Python cookbook(數(shù)據(jù)結(jié)構(gòu)與算法)實(shí)現(xiàn)優(yōu)先級(jí)隊(duì)列的方法示例
這篇文章主要介紹了Python cookbook(數(shù)據(jù)結(jié)構(gòu)與算法)實(shí)現(xiàn)優(yōu)先級(jí)隊(duì)列的方法,結(jié)合實(shí)例形式分析了Python中基于給定優(yōu)先級(jí)進(jìn)行隊(duì)列元素排序的相關(guān)操作技巧,需要的朋友可以參考下2018-02-02