pytorch構(gòu)建網(wǎng)絡(luò)模型的4種方法
利用pytorch來構(gòu)建網(wǎng)絡(luò)模型有很多種方法,以下簡單列出其中的四種。
假設(shè)構(gòu)建一個網(wǎng)絡(luò)模型如下:
卷積層--》Relu層--》池化層--》全連接層--》Relu層--》全連接層
首先導(dǎo)入幾種方法用到的包:
import torch import torch.nn.functional as F from collections import OrderedDict
第一種方法
# Method 1 -----------------------------------------
class Net1(torch.nn.Module):
def __init__(self):
super(Net1, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
self.dense2 = torch.nn.Linear(128, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv(x)), 2)
x = x.view(x.size(0), -1)
x = F.relu(self.dense1(x))
x = self.dense2(x)
return x
print("Method 1:")
model1 = Net1()
print(model1)
這種方法比較常用,早期的教程通常就是使用這種方法。

第二種方法
# Method 2 ------------------------------------------
class Net2(torch.nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(3, 32, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2))
self.dense = torch.nn.Sequential(
torch.nn.Linear(32 * 3 * 3, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 10)
)
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 2:")
model2 = Net2()
print(model2)

這種方法利用torch.nn.Sequential()容器進(jìn)行快速搭建,模型的各層被順序添加到容器中。缺點是每層的編號是默認(rèn)的阿拉伯?dāng)?shù)字,不易區(qū)分。
第三種方法:
# Method 3 -------------------------------
class Net3(torch.nn.Module):
def __init__(self):
super(Net3, self).__init__()
self.conv=torch.nn.Sequential()
self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
self.conv.add_module("relu1",torch.nn.ReLU())
self.conv.add_module("pool1",torch.nn.MaxPool2d(2))
self.dense = torch.nn.Sequential()
self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
self.dense.add_module("relu2",torch.nn.ReLU())
self.dense.add_module("dense2",torch.nn.Linear(128, 10))
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 3:")
model3 = Net3()
print(model3)

這種方法是對第二種方法的改進(jìn):通過add_module()添加每一層,并且為每一層增加了一個單獨的名字。
第四種方法:
# Method 4 ------------------------------------------
class Net4(torch.nn.Module):
def __init__(self):
super(Net4, self).__init__()
self.conv = torch.nn.Sequential(
OrderedDict(
[
("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
("relu1", torch.nn.ReLU()),
("pool", torch.nn.MaxPool2d(2))
]
))
self.dense = torch.nn.Sequential(
OrderedDict([
("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
("relu2", torch.nn.ReLU()),
("dense2", torch.nn.Linear(128, 10))
])
)
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 4:")
model4 = Net4()
print(model4)

是第三種方法的另外一種寫法,通過字典的形式添加每一層,并且設(shè)置單獨的層名稱。
完整代碼:
import torch
import torch.nn.functional as F
from collections import OrderedDict
# Method 1 -----------------------------------------
class Net1(torch.nn.Module):
def __init__(self):
super(Net1, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
self.dense2 = torch.nn.Linear(128, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv(x)), 2)
x = x.view(x.size(0), -1)
x = F.relu(self.dense1(x))
x = self.dense2()
return x
print("Method 1:")
model1 = Net1()
print(model1)
# Method 2 ------------------------------------------
class Net2(torch.nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(3, 32, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2))
self.dense = torch.nn.Sequential(
torch.nn.Linear(32 * 3 * 3, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 10)
)
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 2:")
model2 = Net2()
print(model2)
# Method 3 -------------------------------
class Net3(torch.nn.Module):
def __init__(self):
super(Net3, self).__init__()
self.conv=torch.nn.Sequential()
self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
self.conv.add_module("relu1",torch.nn.ReLU())
self.conv.add_module("pool1",torch.nn.MaxPool2d(2))
self.dense = torch.nn.Sequential()
self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
self.dense.add_module("relu2",torch.nn.ReLU())
self.dense.add_module("dense2",torch.nn.Linear(128, 10))
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 3:")
model3 = Net3()
print(model3)
# Method 4 ------------------------------------------
class Net4(torch.nn.Module):
def __init__(self):
super(Net4, self).__init__()
self.conv = torch.nn.Sequential(
OrderedDict(
[
("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
("relu1", torch.nn.ReLU()),
("pool", torch.nn.MaxPool2d(2))
]
))
self.dense = torch.nn.Sequential(
OrderedDict([
("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
("relu2", torch.nn.ReLU()),
("dense2", torch.nn.Linear(128, 10))
])
)
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 4:")
model4 = Net4()
print(model4)
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
解決pycharm編輯區(qū)顯示yaml文件層級結(jié)構(gòu)遇中文亂碼問題
這篇文章主要介紹了解決pycharm編輯區(qū)顯示yaml文件層級結(jié)構(gòu)遇中文亂碼問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-04-04
Tensorflow加載模型實現(xiàn)圖像分類識別流程詳解
在視覺領(lǐng)域可以分為:1、圖像分類 2、語義分割 3、實例分割 4、目標(biāo)檢測(跟蹤) 5、關(guān)鍵點檢測。該篇主要講解利用Tensorflow 對圖像進(jìn)行圖像分類2022-09-09
淺談python中scipy.misc.logsumexp函數(shù)的運用場景
下面小編就為大家?guī)硪黄獪\談python中scipy.misc.logsumexp函數(shù)的運用場景。小編覺得挺不錯的,現(xiàn)在就分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2016-06-06
Numpy中如何創(chuàng)建矩陣并等間隔抽取數(shù)據(jù)
這篇文章主要介紹了Numpy中如何創(chuàng)建矩陣并等間隔抽取數(shù)據(jù)問題,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2023-05-05
Pytest+Request+Allure+Jenkins實現(xiàn)接口自動化
這篇文章介紹了Pytest+Request+Allure+Jenkins實現(xiàn)接口自動化的方法,文中通過示例代碼介紹的非常詳細(xì)。對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2022-06-06

