tensorflow 1.0用CNN進(jìn)行圖像分類
tensorflow升級(jí)到1.0之后,增加了一些高級(jí)模塊: 如tf.layers, tf.metrics, 和tf.losses,使得代碼稍微有些簡化。
任務(wù):花卉分類
版本:tensorflow 1.0
數(shù)據(jù):flower-photos
花總共有五類,分別放在5個(gè)文件夾下。
閑話不多說,直接上代碼,希望大家能看懂:)
復(fù)制代碼
# -*- coding: utf-8 -*-
from skimage import io,transform
import glob
import os
import tensorflow as tf
import numpy as np
import time
path='e:/flower/'
#將所有的圖片resize成100*100
w=100
h=100
c=3
#讀取圖片
def read_img(path):
cate=[path+x for x in os.listdir(path) if os.path.isdir(path+x)]
imgs=[]
labels=[]
for idx,folder in enumerate(cate):
for im in glob.glob(folder+'/*.jpg'):
print('reading the images:%s'%(im))
img=io.imread(im)
img=transform.resize(img,(w,h))
imgs.append(img)
labels.append(idx)
return np.asarray(imgs,np.float32),np.asarray(labels,np.int32)
data,label=read_img(path)
#打亂順序
num_example=data.shape[0]
arr=np.arange(num_example)
np.random.shuffle(arr)
data=data[arr]
label=label[arr]
#將所有數(shù)據(jù)分為訓(xùn)練集和驗(yàn)證集
ratio=0.8
s=np.int(num_example*ratio)
x_train=data[:s]
y_train=label[:s]
x_val=data[s:]
y_val=label[s:]
#-----------------構(gòu)建網(wǎng)絡(luò)----------------------
#占位符
x=tf.placeholder(tf.float32,shape=[None,w,h,c],name='x')
y_=tf.placeholder(tf.int32,shape=[None,],name='y_')
#第一個(gè)卷積層(100——>50)
conv1=tf.layers.conv2d(
inputs=x,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool1=tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
#第二個(gè)卷積層(50->25)
conv2=tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool2=tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
#第三個(gè)卷積層(25->12)
conv3=tf.layers.conv2d(
inputs=pool2,
filters=128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool3=tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2)
#第四個(gè)卷積層(12->6)
conv4=tf.layers.conv2d(
inputs=pool3,
filters=128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool4=tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2)
re1 = tf.reshape(pool4, [-1, 6 * 6 * 128])
#全連接層
dense1 = tf.layers.dense(inputs=re1,
units=1024,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))
dense2= tf.layers.dense(inputs=dense1,
units=512,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))
logits= tf.layers.dense(inputs=dense2,
units=5,
activation=None,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))
#---------------------------網(wǎng)絡(luò)結(jié)束---------------------------
loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#定義一個(gè)函數(shù),按批次取數(shù)據(jù)
def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
if shuffle:
excerpt = indices[start_idx:start_idx + batch_size]
else:
excerpt = slice(start_idx, start_idx + batch_size)
yield inputs[excerpt], targets[excerpt]
#訓(xùn)練和測試數(shù)據(jù),可將n_epoch設(shè)置更大一些
n_epoch=10
batch_size=64
sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
for epoch in range(n_epoch):
start_time = time.time()
#training
train_loss, train_acc, n_batch = 0, 0, 0
for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True):
_,err,ac=sess.run([train_op,loss,acc], feed_dict={x: x_train_a, y_: y_train_a})
train_loss += err; train_acc += ac; n_batch += 1
print(" train loss: %f" % (train_loss/ n_batch))
print(" train acc: %f" % (train_acc/ n_batch))
#validation
val_loss, val_acc, n_batch = 0, 0, 0
for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle=False):
err, ac = sess.run([loss,acc], feed_dict={x: x_val_a, y_: y_val_a})
val_loss += err; val_acc += ac; n_batch += 1
print(" validation loss: %f" % (val_loss/ n_batch))
print(" validation acc: %f" % (val_acc/ n_batch))
sess.close()
以上就是本文的全部內(nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
python 列表,數(shù)組和矩陣sum的用法及區(qū)別介紹
今天小編就為大家分享一篇python 列表,數(shù)組和矩陣sum的用法及區(qū)別介紹,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-06-06
pandas使用dtype/dtypes修改數(shù)據(jù)類型
在數(shù)據(jù)處理和分析中,經(jīng)常需要對(duì)數(shù)據(jù)進(jìn)行類型轉(zhuǎn)換以滿足特定的需求,本文主要介紹了pandas使用dtype/dtypes修改數(shù)據(jù)類型,具有一定的參考價(jià)值,感興趣的可以了解一下2024-06-06
python如何實(shí)時(shí)獲取tcpdump輸出
這篇文章主要介紹了python如何實(shí)時(shí)獲取tcpdump輸出,幫助大家更好的理解和使用python,感興趣的朋友可以了解下2020-09-09
Python機(jī)器學(xué)習(xí)應(yīng)用之基于決策樹算法的分類預(yù)測篇
所謂決策樹,就是一個(gè)類似于流程圖的樹形結(jié)構(gòu),樹內(nèi)部的每一個(gè)節(jié)點(diǎn)代表的是對(duì)一個(gè)特征的測試,樹的分支代表該特征的每一個(gè)測試結(jié)果,而樹的每一個(gè)葉子節(jié)點(diǎn)代表一個(gè)類別。樹的最高層是就是根節(jié)點(diǎn)2022-01-01
python數(shù)據(jù)分析之將爬取的數(shù)據(jù)保存為csv格式
Python內(nèi)置了CSV模塊,可直接通過該模塊實(shí)現(xiàn)csv文件的讀寫操作,在web應(yīng)用中導(dǎo)出數(shù)據(jù)是比較常見操作,下面這篇文章主要給大家介紹了關(guān)于python數(shù)據(jù)分析之將爬取的數(shù)據(jù)保存為csv格式的相關(guān)資料,需要的朋友可以參考下2022-06-06

