使用pandas讀取csv文件的指定列方法
根據(jù)教程實(shí)現(xiàn)了讀取csv文件前面的幾行數(shù)據(jù),一下就想到了是不是可以實(shí)現(xiàn)前面幾列的數(shù)據(jù)。經(jīng)過多番嘗試總算試出來了一種方法。
之所以想實(shí)現(xiàn)讀取前面的幾列是因?yàn)槲沂诸^的一個(gè)csv文件恰好有后面幾列沒有可用數(shù)據(jù),但是卻一直存在著。原來的數(shù)據(jù)如下:
GreydeMac-mini:chapter06 greyzhang$ cat data.csv
1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,coment_03,,,, 4,name_04,coment_04,,,, 5,name_05,coment_05,,,, 6,name_06,coment_06,,,, 7,name_07,coment_07,,,, 8,name_08,coment_08,,,, 9,name_09,coment_09,,,, 10,name_10,coment_10,,,, 11,name_11,coment_11,,,, 12,name_12,coment_12,,,, 13,name_13,coment_13,,,, 14,name_14,coment_14,,,, 15,name_15,coment_15,,,, 16,name_16,coment_16,,,, 17,name_17,coment_17,,,, 18,name_18,coment_18,,,, 19,name_19,coment_19,,,, 20,name_20,coment_20,,,, 21,name_21,coment_21,,,,
如果使用pandas讀取出全部的數(shù)據(jù),打印的時(shí)候會(huì)出現(xiàn)以下結(jié)果:
In [41]: data = pd.read_csv('data.csv')
In [42]: data Out[42]: 1 name_01 coment_01 Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 6 0 2 name_02 coment_02 NaN NaN NaN NaN 1 3 name_03 coment_03 NaN NaN NaN NaN 2 4 name_04 coment_04 NaN NaN NaN NaN 3 5 name_05 coment_05 NaN NaN NaN NaN 4 6 name_06 coment_06 NaN NaN NaN NaN 5 7 name_07 coment_07 NaN NaN NaN NaN 6 8 name_08 coment_08 NaN NaN NaN NaN 7 9 name_09 coment_09 NaN NaN NaN NaN 8 10 name_10 coment_10 NaN NaN NaN NaN 9 11 name_11 coment_11 NaN NaN NaN NaN 10 12 name_12 coment_12 NaN NaN NaN NaN 11 13 name_13 coment_13 NaN NaN NaN NaN 12 14 name_14 coment_14 NaN NaN NaN NaN 13 15 name_15 coment_15 NaN NaN NaN NaN 14 16 name_16 coment_16 NaN NaN NaN NaN 15 17 name_17 coment_17 NaN NaN NaN NaN 16 18 name_18 coment_18 NaN NaN NaN NaN 17 19 name_19 coment_19 NaN NaN NaN NaN 18 20 name_20 coment_20 NaN NaN NaN NaN 19 21 name_21 coment_21 NaN NaN NaN NaN
所說在學(xué)習(xí)的過程中這并不會(huì)給我?guī)硎裁凑系K,但是在命令行終端界面呆久了總喜歡稍微清爽一點(diǎn)的風(fēng)格。使用read_csv的參數(shù)usecols能夠在一定程度上減少這種混亂感。
In [45]: data = pd.read_csv('data.csv',usecols=[0,1,2,3])
In [46]: data Out[46]: 1 name_01 coment_01 Unnamed: 3 0 2 name_02 coment_02 NaN 1 3 name_03 coment_03 NaN 2 4 name_04 coment_04 NaN 3 5 name_05 coment_05 NaN 4 6 name_06 coment_06 NaN 5 7 name_07 coment_07 NaN 6 8 name_08 coment_08 NaN 7 9 name_09 coment_09 NaN 8 10 name_10 coment_10 NaN 9 11 name_11 coment_11 NaN 10 12 name_12 coment_12 NaN 11 13 name_13 coment_13 NaN 12 14 name_14 coment_14 NaN 13 15 name_15 coment_15 NaN 14 16 name_16 coment_16 NaN 15 17 name_17 coment_17 NaN 16 18 name_18 coment_18 NaN 17 19 name_19 coment_19 NaN 18 20 name_20 coment_20 NaN 19 21 name_21 coment_21 NaN
為了能夠看到數(shù)據(jù)的“邊界”,讀取的時(shí)候顯示了第一列無效的數(shù)據(jù)。正常的使用中,或許我們是想連上面結(jié)果中最后一列的信息也去掉的,那只需要在參數(shù)重去掉最后一列的列號(hào)。
In [47]: data = pd.read_csv('data.csv',usecols=[0,1,2])
In [48]: data Out[48]: 1 name_01 coment_01 0 2 name_02 coment_02 1 3 name_03 coment_03 2 4 name_04 coment_04 3 5 name_05 coment_05 4 6 name_06 coment_06 5 7 name_07 coment_07 6 8 name_08 coment_08 7 9 name_09 coment_09 8 10 name_10 coment_10 9 11 name_11 coment_11 10 12 name_12 coment_12 11 13 name_13 coment_13 12 14 name_14 coment_14 13 15 name_15 coment_15 14 16 name_16 coment_16 15 17 name_17 coment_17 16 18 name_18 coment_18 17 19 name_19 coment_19 18 20 name_20 coment_20 19 21 name_21 coment_21
以上這篇使用pandas讀取csv文件的指定列方法就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
- Python Pandas批量讀取csv文件到dataframe的方法
- 使用實(shí)現(xiàn)pandas讀取csv文件指定的前幾行
- pandas讀取CSV文件時(shí)查看修改各列的數(shù)據(jù)類型格式
- 解決Python中pandas讀取*.csv文件出現(xiàn)編碼問題
- python?pandas庫讀取excel/csv中指定行或列數(shù)據(jù)
- python pandas讀取csv后,獲取列標(biāo)簽的方法
- Pandas讀取csv時(shí)如何設(shè)置列名
- 使用python的pandas庫讀取csv文件保存至mysql數(shù)據(jù)庫
- Pandas讀取csv的實(shí)現(xiàn)
相關(guān)文章
Python使用QQ郵箱發(fā)送郵件報(bào)錯(cuò)smtplib.SMTPAuthenticationError
這篇文章主要介紹了Python使用QQ郵箱發(fā)送郵件報(bào)錯(cuò)smtplib.SMTPAuthenticationError,簡(jiǎn)單介紹了python 發(fā)送郵件的步驟,需要的朋友可以參考下2019-12-12Python中函數(shù)eval和ast.literal_eval的區(qū)別詳解
eval函數(shù)在Python中做數(shù)據(jù)類型的轉(zhuǎn)換還是很有用的。它的作用就是把數(shù)據(jù)還原成它本身或者是能夠轉(zhuǎn)化成的數(shù)據(jù)類型。那么eval和ast.literal_val()的區(qū)別是什么呢?本文將大家介紹關(guān)于Python中函數(shù)eval和ast.literal_eval區(qū)別的相關(guān)資料,需要的朋友可以參考下。2017-08-08python之virtualenv的簡(jiǎn)單使用方法(必看篇)
下面小編就為大家分享一python之virtualenv的簡(jiǎn)單使用方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2017-11-11Python2.7基于淘寶接口獲取IP地址所在地理位置的方法【測(cè)試可用】
這篇文章主要介紹了Python2.7基于淘寶接口獲取IP地址所在地理位置的方法,涉及Python調(diào)用淘寶IP庫接口進(jìn)行IP查詢的簡(jiǎn)單操作技巧,需要的朋友可以參考下2017-06-06Pycharm+Flask零基礎(chǔ)項(xiàng)目搭建入門的實(shí)現(xiàn)
本文主要介紹了Pycharm+Flask零基礎(chǔ)項(xiàng)目搭建入門的實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2023-04-04