關于Tensorflow中的tf.train.batch函數的使用
這兩天一直在看tensorflow中的讀取數據的隊列,說實話,真的是很難懂。也可能我之前沒這方面的經驗吧,最早我都使用的theano,什么都是自己寫。經過這兩天的文檔以及相關資料,并且請教了國內的師弟。今天算是有點小感受了。簡單的說,就是計算圖是從一個管道中讀取數據的,錄入管道是用的現成的方法,讀取也是。為了保證多線程的時候從一個管道讀取數據不會亂吧,所以這種時候 讀取的時候需要線程管理的相關操作。今天我實驗室了一個簡單的操作,就是給一個有序的數據,看看讀出來是不是有序的,結果發(fā)現是有序的,所以直接給代碼:
import tensorflow as tf import numpy as np def generate_data(): num = 25 label = np.asarray(range(0, num)) images = np.random.random([num, 5, 5, 3]) print('label size :{}, image size {}'.format(label.shape, images.shape)) return label, images def get_batch_data(): label, images = generate_data() images = tf.cast(images, tf.float32) label = tf.cast(label, tf.int32) input_queue = tf.train.slice_input_producer([images, label], shuffle=False) image_batch, label_batch = tf.train.batch(input_queue, batch_size=10, num_threads=1, capacity=64) return image_batch, label_batch image_batch, label_batch = get_batch_data() with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess, coord) i = 0 try: while not coord.should_stop(): image_batch_v, label_batch_v = sess.run([image_batch, label_batch]) i += 1 for j in range(10): print(image_batch_v.shape, label_batch_v[j]) except tf.errors.OutOfRangeError: print("done") finally: coord.request_stop() coord.join(threads)
記得那個slice_input_producer方法,默認是要shuffle的哈。
Besides, I would like to comment this code.
1: there is a parameter ‘num_epochs' in slice_input_producer, which controls how many epochs the slice_input_producer method would work. when this method runs the specified epochs, it would report the OutOfRangeRrror. I think it would be useful for our control the training epochs.
2: the output of this method is one single image, we could operate this single image with tensorflow API, such as normalization, crops, and so on, then this single image is feed to batch method, a batch of images for training or testing wouldbe received.
tf.train.batch和tf.train.shuffle_batch的區(qū)別用法
tf.train.batch([example, label], batch_size=batch_size, capacity=capacity):[example, label]表示樣本和樣本標簽,這個可以是一個樣本和一個樣本標簽,batch_size是返回的一個batch樣本集的樣本個數。capacity是隊列中的容量。這主要是按順序組合成一個batch
tf.train.shuffle_batch([example, label], batch_size=batch_size, capacity=capacity, min_after_dequeue)。這里面的參數和上面的一樣的意思。不一樣的是這個參數min_after_dequeue,一定要保證這參數小于capacity參數的值,否則會出錯。這個代表隊列中的元素大于它的時候就輸出亂的順序的batch。也就是說這個函數的輸出結果是一個亂序的樣本排列的batch,不是按照順序排列的。
上面的函數返回值都是一個batch的樣本和樣本標簽,只是一個是按照順序,另外一個是隨機的
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
Python輕量級ORM框架Peewee訪問sqlite數據庫的方法詳解
這篇文章主要介紹了Python輕量級ORM框架Peewee訪問sqlite數據庫的方法,結合實例形式較為詳細的分析了ORM框架的概念、功能及peewee的安裝、使用及操作sqlite數據庫的方法,需要的朋友可以參考下2017-07-07Pycharm如何設置默認請求頭和切換python環(huán)境
這篇文章主要介紹了Pycharm如何設置默認請求頭和切換python環(huán)境問題,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2024-06-06