TensorFlow實(shí)現(xiàn)非線性支持向量機(jī)的實(shí)現(xiàn)方法
這里將加載iris數(shù)據(jù)集,創(chuàng)建一個(gè)山鳶尾花(I.setosa)的分類器。
# Nonlinear SVM Example
#----------------------------------
#
# This function wll illustrate how to
# implement the gaussian kernel on
# the iris dataset.
#
# Gaussian Kernel:
# K(x1, x2) = exp(-gamma * abs(x1 - x2)^2)
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()
# Create graph
sess = tf.Session()
# Load the data
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
# 加載iris數(shù)據(jù)集,抽取花萼長度和花瓣寬度,分割每類的x_vals值和y_vals值
iris = datasets.load_iris()
x_vals = np.array([[x[0], x[3]] for x in iris.data])
y_vals = np.array([1 if y==0 else -1 for y in iris.target])
class1_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==1]
class1_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==1]
class2_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==-1]
class2_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==-1]
# Declare batch size
# 聲明批量大?。ㄆ蛴诟笈看笮。?
batch_size = 150
# Initialize placeholders
x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, 2], dtype=tf.float32)
# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1,batch_size]))
# Gaussian (RBF) kernel
# 聲明批量大?。ㄆ蛴诟笈看笮。?
gamma = tf.constant(-25.0)
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))
# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term))
# Gaussian (RBF) prediction kernel
# 創(chuàng)建一個(gè)預(yù)測(cè)核函數(shù)
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),[-1,1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))
# 聲明一個(gè)準(zhǔn)確度函數(shù),其為正確分類的數(shù)據(jù)點(diǎn)的百分比
prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target),b), pred_kernel)
prediction = tf.sign(prediction_output-tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))
# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)
# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)
# Training loop
loss_vec = []
batch_accuracy = []
for i in range(300):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)
acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid:rand_x})
batch_accuracy.append(acc_temp)
if (i+1)%75==0:
print('Step #' + str(i+1))
print('Loss = ' + str(temp_loss))
# Create a mesh to plot points in
# 為了繪制決策邊界(Decision Boundary),我們創(chuàng)建一個(gè)數(shù)據(jù)點(diǎn)(x,y)的網(wǎng)格,評(píng)估預(yù)測(cè)函數(shù)
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
[grid_predictions] = sess.run(prediction, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)
# Plot points and grid
plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Pedal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()
# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()
# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()
輸出:
Step #75
Loss = -110.332
Step #150
Loss = -222.832
Step #225
Loss = -335.332
Step #300
Loss = -447.832
四種不同的gamma值(1,10,25,100):
不同gamma值的山鳶尾花(I.setosa)的分類器結(jié)果圖,采用高斯核函數(shù)的SVM。
gamma值越大,每個(gè)數(shù)據(jù)點(diǎn)對(duì)分類邊界的影響就越大。
以上就是本文的全部內(nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
python3.7環(huán)境下sanic-ext未生效踩坑解析
這篇文章主要為大家介紹了python3.7環(huán)境下sanic-ext未生效踩坑解析,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-01-01
python操作SqlServer獲取特定表的所有列名(推薦)
這篇文章主要介紹了python操作SqlServer獲取特定表的所有列名,本文通過實(shí)例代碼給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2022-08-08
利用Python批量壓縮png方法實(shí)例(支持過濾個(gè)別文件與文件夾)
這篇文章主要給大家介紹了關(guān)于利用Python批量壓縮png的相關(guān)資料,文中介紹的方法支持過濾個(gè)別文件與文件夾,文中通過示例代碼介紹的非常詳細(xì),需要的朋友們下面跟著小編來一起看看吧。2017-07-07
python常用數(shù)據(jù)結(jié)構(gòu)元組詳解
這篇文章主要介紹了python常用數(shù)據(jù)結(jié)構(gòu)元組詳解,文章圍繞主題展開詳細(xì)的內(nèi)容介紹,具有一定的參考價(jià)值,需要的小伙伴可以參考一下2022-08-08
實(shí)例探究Python以并發(fā)方式編寫高性能端口掃描器的方法
端口掃描器就是向一批端口上發(fā)送請(qǐng)求來檢測(cè)端口是否打開的程序,這里我們以實(shí)例探究Python以并發(fā)方式編寫高性能端口掃描器的方法2016-06-06
python實(shí)現(xiàn)自動(dòng)清理重復(fù)文件
這篇文章主要介紹了python如何實(shí)現(xiàn)自動(dòng)清理重復(fù)文件,幫助大家更好的理解和學(xué)習(xí)python,感興趣的朋友可以了解下2020-08-08

