Python基于生成器迭代實(shí)現(xiàn)的八皇后問(wèn)題示例
本文實(shí)例講述了Python基于生成器迭代實(shí)現(xiàn)的八皇后問(wèn)題。分享給大家供大家參考,具體如下:
問(wèn)題:有一個(gè)棋盤和8個(gè)要放到上面的皇后,唯一的要求是皇后之間不能形成威脅。也就是說(shuō),必須把他們防止成每個(gè)皇后都不能吃掉其他皇后的狀態(tài)。
# -*- coding: utf-8 -*- #python 2.7.13 __metaclass__ = type def confict(state, nextX): nextY = len(state) for i in range(nextY): if abs(state[i] - nextX) in (0, nextY - i): return True return False def queens(num=8, state=()): for pos in range(num): if not confict(state, pos): if len(state) == num -1: yield (pos,) else: for result in queens(num, state + (pos,)): yield (pos,) + result print list(queens()) #打印輸出
運(yùn)行結(jié)果:
[(0, 4, 7, 5, 2, 6, 1, 3), (0, 5, 7, 2, 6, 3, 1, 4), (0, 6, 3, 5, 7, 1, 4, 2), (0, 6, 4, 7, 1, 3, 5, 2), (1, 3, 5, 7, 2, 0, 6, 4), (1, 4, 6, 0, 2, 7, 5, 3), (1, 4, 6, 3, 0, 7, 5, 2), (1, 5, 0, 6, 3, 7, 2, 4), (1, 5, 7, 2, 0, 3, 6, 4), (1, 6, 2, 5, 7, 4, 0, 3), (1, 6, 4, 7, 0, 3, 5, 2), (1, 7, 5, 0, 2, 4, 6, 3), (2, 0, 6, 4, 7, 1, 3, 5), (2, 4, 1, 7, 0, 6, 3, 5), (2, 4, 1, 7, 5, 3, 6, 0), (2, 4, 6, 0, 3, 1, 7, 5), (2, 4, 7, 3, 0, 6, 1, 5), (2, 5, 1, 4, 7, 0, 6, 3), (2, 5, 1, 6, 0, 3, 7, 4), (2, 5, 1, 6, 4, 0, 7, 3), (2, 5, 3, 0, 7, 4, 6, 1), (2, 5, 3, 1, 7, 4, 6, 0), (2, 5, 7, 0, 3, 6, 4, 1), (2, 5, 7, 0, 4, 6, 1, 3), (2, 5, 7, 1, 3, 0, 6, 4), (2, 6, 1, 7, 4, 0, 3, 5), (2, 6, 1, 7, 5, 3, 0, 4), (2, 7, 3, 6, 0, 5, 1, 4), (3, 0, 4, 7, 1, 6, 2, 5), (3, 0, 4, 7, 5, 2, 6, 1), (3, 1, 4, 7, 5, 0, 2, 6), (3, 1, 6, 2, 5, 7, 0, 4), (3, 1, 6, 2, 5, 7, 4, 0), (3, 1, 6, 4, 0, 7, 5, 2), (3, 1, 7, 4, 6, 0, 2, 5), (3, 1, 7, 5, 0, 2, 4, 6), (3, 5, 0, 4, 1, 7, 2, 6), (3, 5, 7, 1, 6, 0, 2, 4), (3, 5, 7, 2, 0, 6, 4, 1), (3, 6, 0, 7, 4, 1, 5, 2), (3, 6, 2, 7, 1, 4, 0, 5), (3, 6, 4, 1, 5, 0, 2, 7), (3, 6, 4, 2, 0, 5, 7, 1), (3, 7, 0, 2, 5, 1, 6, 4), (3, 7, 0, 4, 6, 1, 5, 2), (3, 7, 4, 2, 0, 6, 1, 5), (4, 0, 3, 5, 7, 1, 6, 2), (4, 0, 7, 3, 1, 6, 2, 5), (4, 0, 7, 5, 2, 6, 1, 3), (4, 1, 3, 5, 7, 2, 0, 6), (4, 1, 3, 6, 2, 7, 5, 0), (4, 1, 5, 0, 6, 3, 7, 2), (4, 1, 7, 0, 3, 6, 2, 5), (4, 2, 0, 5, 7, 1, 3, 6), (4, 2, 0, 6, 1, 7, 5, 3), (4, 2, 7, 3, 6, 0, 5, 1), (4, 6, 0, 2, 7, 5, 3, 1), (4, 6, 0, 3, 1, 7, 5, 2), (4, 6, 1, 3, 7, 0, 2, 5), (4, 6, 1, 5, 2, 0, 3, 7), (4, 6, 1, 5, 2, 0, 7, 3), (4, 6, 3, 0, 2, 7, 5, 1), (4, 7, 3, 0, 2, 5, 1, 6), (4, 7, 3, 0, 6, 1, 5, 2), (5, 0, 4, 1, 7, 2, 6, 3), (5, 1, 6, 0, 2, 4, 7, 3), (5, 1, 6, 0, 3, 7, 4, 2), (5, 2, 0, 6, 4, 7, 1, 3), (5, 2, 0, 7, 3, 1, 6, 4), (5, 2, 0, 7, 4, 1, 3, 6), (5, 2, 4, 6, 0, 3, 1, 7), (5, 2, 4, 7, 0, 3, 1, 6), (5, 2, 6, 1, 3, 7, 0, 4), (5, 2, 6, 1, 7, 4, 0, 3), (5, 2, 6, 3, 0, 7, 1, 4), (5, 3, 0, 4, 7, 1, 6, 2), (5, 3, 1, 7, 4, 6, 0, 2), (5, 3, 6, 0, 2, 4, 1, 7), (5, 3, 6, 0, 7, 1, 4, 2), (5, 7, 1, 3, 0, 6, 4, 2), (6, 0, 2, 7, 5, 3, 1, 4), (6, 1, 3, 0, 7, 4, 2, 5), (6, 1, 5, 2, 0, 3, 7, 4), (6, 2, 0, 5, 7, 4, 1, 3), (6, 2, 7, 1, 4, 0, 5, 3), (6, 3, 1, 4, 7, 0, 2, 5), (6, 3, 1, 7, 5, 0, 2, 4), (6, 4, 2, 0, 5, 7, 1, 3), (7, 1, 3, 0, 6, 4, 2, 5), (7, 1, 4, 2, 0, 6, 3, 5), (7, 2, 0, 5, 1, 4, 6, 3), (7, 3, 0, 2, 5, 1, 6, 4)]
輸出列表長(zhǎng)度:
print len(list(queens()))# 輸出:92
更多關(guān)于Python相關(guān)內(nèi)容感興趣的讀者可查看本站專題:《Python數(shù)學(xué)運(yùn)算技巧總結(jié)》、《Python數(shù)據(jù)結(jié)構(gòu)與算法教程》、《Python函數(shù)使用技巧總結(jié)》、《Python字符串操作技巧匯總》、《Python入門與進(jìn)階經(jīng)典教程》及《Python文件與目錄操作技巧匯總》
希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。
相關(guān)文章
python批量制作雷達(dá)圖的實(shí)現(xiàn)方法
本文通過(guò)實(shí)例代碼介紹了如何用python批量制作雷達(dá)圖的實(shí)現(xiàn)方法,下面一起來(lái)看看如何實(shí)現(xiàn)的。2016-07-07- 我們知道python只定義了6種數(shù)據(jù)類型,字符串,整數(shù),浮點(diǎn)數(shù),列表,元組,字典。但是C語(yǔ)言中有些字節(jié)型的變量,在python中該如何實(shí)現(xiàn)呢?這點(diǎn)頗為重要,特別是要在網(wǎng)絡(luò)上進(jìn)行數(shù)據(jù)傳輸?shù)脑挕?/div> 2014-06-06
在PyCharm中找不到Conda創(chuàng)建的環(huán)境的解決方法
本文主要介紹了在PyCharm中找不到Conda創(chuàng)建的環(huán)境的解決方法,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2023-07-07Python裝飾器限制函數(shù)運(yùn)行時(shí)間超時(shí)則退出執(zhí)行
今天小編就為大家分享一篇關(guān)于Python裝飾器限制函數(shù)運(yùn)行時(shí)間超時(shí)則退出執(zhí)行,小編覺得內(nèi)容挺不錯(cuò)的,現(xiàn)在分享給大家,具有很好的參考價(jià)值,需要的朋友一起跟隨小編來(lái)看看吧2019-04-04Pytorch使用DataLoader實(shí)現(xiàn)批量加載數(shù)據(jù)
這篇文章主要介紹了Pytorch使用DataLoader實(shí)現(xiàn)批量加載數(shù)據(jù)方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2024-02-02最新評(píng)論