欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

對pandas中to_dict的用法詳解

 更新時間:2018年06月05日 10:03:39   作者:積跬步___至千里  
今天小編就為大家分享一篇對pandas中to_dict的用法詳解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

簡介:pandas 中的to_dict 可以對DataFrame類型的數(shù)據(jù)進(jìn)行轉(zhuǎn)換

可以選擇六種的轉(zhuǎn)換類型,分別對應(yīng)于參數(shù) ‘dict', ‘list', ‘series', ‘split', ‘records', ‘index',下面逐一介紹每種的用法

Help on method to_dict in module pandas.core.frame:
to_dict(orient='dict') method of pandas.core.frame.DataFrame instance
 Convert DataFrame to dictionary.
 Parameters
 ----------
 orient : str {'dict', 'list', 'series', 'split', 'records', 'index'}
 Determines the type of the values of the dictionary.
 - dict (default) : dict like {column -> {index -> value}}
 - list : dict like {column -> [values]}
 - series : dict like {column -> Series(values)}
 - split : dict like
  {index -> [index], columns -> [columns], data -> [values]}
 - records : list like
  [{column -> value}, ... , {column -> value}]
 - index : dict like {index -> {column -> value}}
  .. versionadded:: 0.17.0
 Abbreviations are allowed. `s` indicates `series` and `sp`
 indicates `split`.
 Returns
 -------
 result : dict like {column -> {index -> value}}

1、選擇參數(shù)orient='dict'

dict也是默認(rèn)的參數(shù),下面的data數(shù)據(jù)類型為DataFrame結(jié)構(gòu), 會形成 {column -> {index -> value}}這樣的結(jié)構(gòu)的字典,可以看成是一種雙重字典結(jié)構(gòu)

- 單獨(dú)提取每列的值及其索引,然后組合成一個字典

- 再將上述的列屬性作為關(guān)鍵字(key),值(values)為上述的字典

查詢方式為 :data_dict[key1][key2]

- data_dict 為參數(shù)選擇orient='dict'時的數(shù)據(jù)名

- key1 為列屬性的鍵值(外層)

- key2 為內(nèi)層字典對應(yīng)的鍵值

data 
Out[9]: 
 pclass age embarked   home.dest sex
1086 3rd 31.194181 UNKNOWN   UNKNOWN male
12 1st 31.194181 Cherbourg   Paris, France female
1036 3rd 31.194181 UNKNOWN   UNKNOWN male
833 3rd 32.000000 Southampton Foresvik, Norway Portland, ND male
1108 3rd 31.194181 UNKNOWN   UNKNOWN male
562 2nd 41.000000 Cherbourg   New York, NY male
437 2nd 48.000000 Southampton Somerset / Bernardsville, NJ female
663 3rd 26.000000 Southampton   UNKNOWN male
669 3rd 19.000000 Southampton   England male
507 2nd 31.194181 Southampton  Petworth, Sussex male
In[10]: data_dict=data.to_dict(orient= 'dict')
In[11]: data_dict
Out[11]: 
{'age': {12: 31.19418104265403,
 437: 48.0,
 507: 31.19418104265403,
 562: 41.0,
 663: 26.0,
 669: 19.0,
 833: 32.0,
 1036: 31.19418104265403,
 1086: 31.19418104265403,
 1108: 31.19418104265403},
 'embarked': {12: 'Cherbourg',
 437: 'Southampton',
 507: 'Southampton',
 562: 'Cherbourg',
 663: 'Southampton',
 669: 'Southampton',
 833: 'Southampton',
 1036: 'UNKNOWN',
 1086: 'UNKNOWN',
 1108: 'UNKNOWN'},
 'home.dest': {12: 'Paris, France',
 437: 'Somerset / Bernardsville, NJ',
 507: 'Petworth, Sussex',
 562: 'New York, NY',
 663: 'UNKNOWN',
 669: 'England',
 833: 'Foresvik, Norway Portland, ND',
 1036: 'UNKNOWN',
 1086: 'UNKNOWN',
 1108: 'UNKNOWN'},
 'pclass': {12: '1st',
 437: '2nd',
 507: '2nd',
 562: '2nd',
 663: '3rd',
 669: '3rd',
 833: '3rd',
 1036: '3rd',
 1086: '3rd',
 1108: '3rd'},
 'sex': {12: 'female',
 437: 'female',
 507: 'male',
 562: 'male',
 663: 'male',
 669: 'male',
 833: 'male',
 1036: 'male',
 1086: 'male',
 1108: 'male'}}

2、當(dāng)關(guān)鍵字orient=' list' 時

和1中比較相似,只不過內(nèi)層變成了一個列表,結(jié)構(gòu)為{column -> [values]}

查詢方式為: data_list[keys][index]

data_list 為關(guān)鍵字orient='list' 時對應(yīng)的數(shù)據(jù)名

keys 為列屬性的鍵值,如本例中的'age' , ‘embarked'等

index 為整型索引,從0開始到最后

In[19]: data_list=data.to_dict(orient='list')
In[20]: data_list
Out[20]: 
{'age': [31.19418104265403,
 31.19418104265403,
 31.19418104265403,
 32.0,
 31.19418104265403,
 41.0,
 48.0,
 26.0,
 19.0,
 31.19418104265403],
 'embarked': ['UNKNOWN',
 'Cherbourg',
 'UNKNOWN',
 'Southampton',
 'UNKNOWN',
 'Cherbourg',
 'Southampton',
 'Southampton',
 'Southampton',
 'Southampton'],
 'home.dest': ['UNKNOWN',
 'Paris, France',
 'UNKNOWN',
 'Foresvik, Norway Portland, ND',
 'UNKNOWN',
 'New York, NY',
 'Somerset / Bernardsville, NJ',
 'UNKNOWN',
 'England',
 'Petworth, Sussex'],
 'pclass': ['3rd',
 '1st',
 '3rd',
 '3rd',
 '3rd',
 '2nd',
 '2nd',
 '3rd',
 '3rd',
 '2nd'],
 'sex': ['male',
 'female',
 'male',
 'male',
 'male',
 'male',
 'female',
 'male',
 'male',
 'male']}

3、關(guān)鍵字參數(shù)orient='series'

形成結(jié)構(gòu){column -> Series(values)}

調(diào)用格式為:data_series[key1][key2]或data_dict[key1]

data_series 為數(shù)據(jù)對應(yīng)的名字

key1 為列屬性的鍵值,如本例中的'age' , ‘embarked'等

key2 使用數(shù)據(jù)原始的索引(可選)

In[21]: data_series=data.to_dict(orient='series')
In[22]: data_series
Out[22]: 
{'age': 1086 31.194181
 12 31.194181
 1036 31.194181
 833 32.000000
 1108 31.194181
 562 41.000000
 437 48.000000
 663 26.000000
 669 19.000000
 507 31.194181
 Name: age, dtype: float64, 'embarked': 1086 UNKNOWN
 12 Cherbourg
 1036 UNKNOWN
 833 Southampton
 1108 UNKNOWN
 562 Cherbourg
 437 Southampton
 663 Southampton
 669 Southampton
 507 Southampton
 Name: embarked, dtype: object, 'home.dest': 1086    UNKNOWN
 12   Paris, France
 1036    UNKNOWN
 833 Foresvik, Norway Portland, ND
 1108    UNKNOWN
 562   New York, NY
 437 Somerset / Bernardsville, NJ
 663    UNKNOWN
 669    England
 507   Petworth, Sussex
 Name: home.dest, dtype: object, 'pclass': 1086 3rd
 12 1st
 1036 3rd
 833 3rd
 1108 3rd
 562 2nd
 437 2nd
 663 3rd
 669 3rd
 507 2nd
 Name: pclass, dtype: object, 'sex': 1086 male
 12 female
 1036 male
 833 male
 1108 male
 562 male
 437 female
 663 male
 669 male
 507 male
 Name: sex, dtype: object}

4、關(guān)鍵字參數(shù)orient='split'

形成{index -> [index], columns -> [columns], data -> [values]}的結(jié)構(gòu),是將數(shù)據(jù)、索引、屬性名單獨(dú)脫離出來構(gòu)成字典

調(diào)用方式有 data_split[‘index'],data_split[‘data'],data_split[‘columns']

data_split=data.to_dict(orient='split')
data_split
Out[38]: 
{'columns': ['pclass', 'age', 'embarked', 'home.dest', 'sex'],
 'data': [['3rd', 31.19418104265403, 'UNKNOWN', 'UNKNOWN', 'male'],
 ['1st', 31.19418104265403, 'Cherbourg', 'Paris, France', 'female'],
 ['3rd', 31.19418104265403, 'UNKNOWN', 'UNKNOWN', 'male'],
 ['3rd', 32.0, 'Southampton', 'Foresvik, Norway Portland, ND', 'male'],
 ['3rd', 31.19418104265403, 'UNKNOWN', 'UNKNOWN', 'male'],
 ['2nd', 41.0, 'Cherbourg', 'New York, NY', 'male'],
 ['2nd', 48.0, 'Southampton', 'Somerset / Bernardsville, NJ', 'female'],
 ['3rd', 26.0, 'Southampton', 'UNKNOWN', 'male'],
 ['3rd', 19.0, 'Southampton', 'England', 'male'],
 ['2nd', 31.19418104265403, 'Southampton', 'Petworth, Sussex', 'male']],
 'index': [1086, 12, 1036, 833, 1108, 562, 437, 663, 669, 507]}

5、當(dāng)關(guān)鍵字orient='records' 時

形成[{column -> value}, … , {column -> value}]的結(jié)構(gòu)

整體構(gòu)成一個列表,內(nèi)層是將原始數(shù)據(jù)的每行提取出來形成字典

調(diào)用格式為data_records[index][key1]

data_records=data.to_dict(orient='records')
data_records
Out[41]: 
[{'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 31.19418104265403,
 'embarked': 'Cherbourg',
 'home.dest': 'Paris, France',
 'pclass': '1st',
 'sex': 'female'},
 {'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 32.0,
 'embarked': 'Southampton',
 'home.dest': 'Foresvik, Norway Portland, ND',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 41.0,
 'embarked': 'Cherbourg',
 'home.dest': 'New York, NY',
 'pclass': '2nd',
 'sex': 'male'},
 {'age': 48.0,
 'embarked': 'Southampton',
 'home.dest': 'Somerset / Bernardsville, NJ',
 'pclass': '2nd',
 'sex': 'female'},
 {'age': 26.0,
 'embarked': 'Southampton',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 19.0,
 'embarked': 'Southampton',
 'home.dest': 'England',
 'pclass': '3rd',
 'sex': 'male'},
 {'age': 31.19418104265403,
 'embarked': 'Southampton',
 'home.dest': 'Petworth, Sussex',
 'pclass': '2nd',
 'sex': 'male'}]

6、當(dāng)關(guān)鍵字orient='index' 時

形成{index -> {column -> value}}的結(jié)構(gòu),調(diào)用格式正好和'dict' 對應(yīng)的反過來,請讀者自己思考

data_index=data.to_dict(orient='index')
data_index
Out[43]: 
{12: {'age': 31.19418104265403,
 'embarked': 'Cherbourg',
 'home.dest': 'Paris, France',
 'pclass': '1st',
 'sex': 'female'},
 437: {'age': 48.0,
 'embarked': 'Southampton',
 'home.dest': 'Somerset / Bernardsville, NJ',
 'pclass': '2nd',
 'sex': 'female'},
 507: {'age': 31.19418104265403,
 'embarked': 'Southampton',
 'home.dest': 'Petworth, Sussex',
 'pclass': '2nd',
 'sex': 'male'},
 562: {'age': 41.0,
 'embarked': 'Cherbourg',
 'home.dest': 'New York, NY',
 'pclass': '2nd',
 'sex': 'male'},
 663: {'age': 26.0,
 'embarked': 'Southampton',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 669: {'age': 19.0,
 'embarked': 'Southampton',
 'home.dest': 'England',
 'pclass': '3rd',
 'sex': 'male'},
 833: {'age': 32.0,
 'embarked': 'Southampton',
 'home.dest': 'Foresvik, Norway Portland, ND',
 'pclass': '3rd',
 'sex': 'male'},
 1036: {'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 1086: {'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'},
 1108: {'age': 31.19418104265403,
 'embarked': 'UNKNOWN',
 'home.dest': 'UNKNOWN',
 'pclass': '3rd',
 'sex': 'male'}}

以上這篇對pandas中to_dict的用法詳解就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • python中unittest框架應(yīng)用詳解

    python中unittest框架應(yīng)用詳解

    這篇文章主要介紹了Python中Unittest框架的具體使用,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2021-09-09
  • 詳解Python Qt的窗體開發(fā)的基本操作

    詳解Python Qt的窗體開發(fā)的基本操作

    這篇文章主要介紹了詳解Python Qt的窗體開發(fā)的基本操作,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2019-07-07
  • 深入分析python 排序

    深入分析python 排序

    這篇文章主要介紹了python 排序的相關(guān)資料,幫助大家更好的理解和學(xué)習(xí)python排序的知識,感興趣的朋友可以了解下
    2020-08-08
  • python爬蟲使用requests發(fā)送post請求示例詳解

    python爬蟲使用requests發(fā)送post請求示例詳解

    這篇文章主要介紹了python爬蟲使用requests發(fā)送post請求示例詳解,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2020-08-08
  • Django中信號signals的簡單使用方法

    Django中信號signals的簡單使用方法

    這篇文章主要給大家介紹了關(guān)于Django中信號signals的簡單使用方法,文中通過示例代碼介紹的非常詳細(xì),對大家學(xué)習(xí)或者使用Django具有一定的參考學(xué)習(xí)價值,需要的朋友們下面來一起學(xué)習(xí)學(xué)習(xí)吧
    2019-07-07
  • Python爬蟲運(yùn)用正則表達(dá)式的方法和優(yōu)缺點

    Python爬蟲運(yùn)用正則表達(dá)式的方法和優(yōu)缺點

    這篇文章主要給大家介紹了關(guān)于Python爬蟲運(yùn)用正則表達(dá)式的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對大家學(xué)習(xí)或者使用Python具有一定的參考學(xué)習(xí)價值,需要的朋友們下面來一起學(xué)習(xí)學(xué)習(xí)吧
    2019-08-08
  • Python編寫帶選項的命令行程序方法

    Python編寫帶選項的命令行程序方法

    今天小編就為大家分享一篇Python編寫帶選項的命令行程序方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2019-08-08
  • Python實現(xiàn)的json文件讀取及中文亂碼顯示問題解決方法

    Python實現(xiàn)的json文件讀取及中文亂碼顯示問題解決方法

    這篇文章主要介紹了Python實現(xiàn)的json文件讀取及中文亂碼顯示問題解決方法,涉及Python針對json文件的讀取載入、編碼轉(zhuǎn)換等相關(guān)操作技巧,需要的朋友可以參考下
    2018-08-08
  • Python列表推導(dǎo)式的基本操作詳解

    Python列表推導(dǎo)式的基本操作詳解

    Python?的列表推導(dǎo)式,這個看似簡單的語法糖,實則內(nèi)含無限威力,本文將從基礎(chǔ)的概念認(rèn)識,到各類進(jìn)階的用法和操作,更深入地探討列表推導(dǎo)式,希望對大家有所幫助
    2023-06-06
  • Jetson?NX?配置?pytorch的問題及解決方法

    Jetson?NX?配置?pytorch的問題及解決方法

    這篇文章主要介紹了Jetson?NX?配置?pytorch的相關(guān)知識,本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下
    2023-03-03

最新評論