Python實(shí)現(xiàn)的樸素貝葉斯算法經(jīng)典示例【測(cè)試可用】
本文實(shí)例講述了Python實(shí)現(xiàn)的樸素貝葉斯算法。分享給大家供大家參考,具體如下:
代碼主要參考機(jī)器學(xué)習(xí)實(shí)戰(zhàn)那本書,發(fā)現(xiàn)最近老外的書確實(shí)比中國(guó)人寫的好,由淺入深,代碼通俗易懂,不多說(shuō)上代碼:
#encoding:utf-8 ''''' Created on 2015年9月6日 @author: ZHOUMEIXU204 樸素貝葉斯實(shí)現(xiàn)過(guò)程 ''' #在該算法中類標(biāo)簽為1和0,如果是多標(biāo)簽稍微改動(dòng)代碼既可 import numpy as np path=u"D:\\Users\\zhoumeixu204\Desktop\\python語(yǔ)言機(jī)器學(xué)習(xí)\\機(jī)器學(xué)習(xí)實(shí)戰(zhàn)代碼 python\\機(jī)器學(xué)習(xí)實(shí)戰(zhàn)代碼\\machinelearninginaction\\Ch04\\" def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],\ ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],\ ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],\ ['stop', 'posting', 'stupid', 'worthless', 'garbage'],\ ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],\ ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0,1,0,1,0,1] #1 is abusive, 0 not return postingList,classVec def createVocabList(dataset): vocabSet=set([]) for document in dataset: vocabSet=vocabSet|set(document) return list(vocabSet) def setOfWordseVec(vocabList,inputSet): returnVec=[0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)]=1 #vocabList.index() 函數(shù)獲取vocabList列表某個(gè)元素的位置,這段代碼得到一個(gè)只包含0和1的列表 else: print("the word :%s is not in my Vocabulary!"%word) return returnVec listOPosts,listClasses=loadDataSet() myVocabList=createVocabList(listOPosts) print(len(myVocabList)) print(myVocabList) print(setOfWordseVec(myVocabList, listOPosts[0])) print(setOfWordseVec(myVocabList, listOPosts[3])) #上述代碼是將文本轉(zhuǎn)化為向量的形式,如果出現(xiàn)則在向量中為1,若不出現(xiàn) ,則為0 def trainNB0(trainMatrix,trainCategory): #創(chuàng)建樸素貝葉斯分類器函數(shù) numTrainDocs=len(trainMatrix) numWords=len(trainMatrix[0]) pAbusive=sum(trainCategory)/float(numTrainDocs) p0Num=np.ones(numWords);p1Num=np.ones(numWords) p0Deom=2.0;p1Deom=2.0 for i in range(numTrainDocs): if trainCategory[i]==1: p1Num+=trainMatrix[i] p1Deom+=sum(trainMatrix[i]) else: p0Num+=trainMatrix[i] p0Deom+=sum(trainMatrix[i]) p1vect=np.log(p1Num/p1Deom) #change to log p0vect=np.log(p0Num/p0Deom) #change to log return p0vect,p1vect,pAbusive listOPosts,listClasses=loadDataSet() myVocabList=createVocabList(listOPosts) trainMat=[] for postinDoc in listOPosts: trainMat.append(setOfWordseVec(myVocabList, postinDoc)) p0V,p1V,pAb=trainNB0(trainMat, listClasses) if __name__!='__main__': print("p0的概況") print (p0V) print("p1的概率") print (p1V) print("pAb的概率") print (pAb)
運(yùn)行結(jié)果:
32
['him', 'garbage', 'problems', 'take', 'steak', 'quit', 'so', 'is', 'cute', 'posting', 'dog', 'to', 'love', 'licks', 'dalmation', 'flea', 'I', 'please', 'maybe', 'buying', 'my', 'stupid', 'park', 'food', 'stop', 'has', 'ate', 'help', 'how', 'mr', 'worthless', 'not']
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]
# -*- coding:utf-8 -*- #!python2 #構(gòu)建樣本分類器testEntry=['love','my','dalmation'] testEntry=['stupid','garbage']到底屬于哪個(gè)類別 import numpy as np def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],\ ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],\ ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],\ ['stop', 'posting', 'stupid', 'worthless', 'garbage'],\ ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],\ ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0,1,0,1,0,1] #1 is abusive, 0 not return postingList,classVec def createVocabList(dataset): vocabSet=set([]) for document in dataset: vocabSet=vocabSet|set(document) return list(vocabSet) def setOfWordseVec(vocabList,inputSet): returnVec=[0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)]=1 #vocabList.index() 函數(shù)獲取vocabList列表某個(gè)元素的位置,這段代碼得到一個(gè)只包含0和1的列表 else: print("the word :%s is not in my Vocabulary!"%word) return returnVec def trainNB0(trainMatrix,trainCategory): #創(chuàng)建樸素貝葉斯分類器函數(shù) numTrainDocs=len(trainMatrix) numWords=len(trainMatrix[0]) pAbusive=sum(trainCategory)/float(numTrainDocs) p0Num=np.ones(numWords);p1Num=np.ones(numWords) p0Deom=2.0;p1Deom=2.0 for i in range(numTrainDocs): if trainCategory[i]==1: p1Num+=trainMatrix[i] p1Deom+=sum(trainMatrix[i]) else: p0Num+=trainMatrix[i] p0Deom+=sum(trainMatrix[i]) p1vect=np.log(p1Num/p1Deom) #change to log p0vect=np.log(p0Num/p0Deom) #change to log return p0vect,p1vect,pAbusive def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): p1=sum(vec2Classify*p1Vec)+np.log(pClass1) p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1) if p1>p0: return 1 else: return 0 def testingNB(): listOPosts,listClasses=loadDataSet() myVocabList=createVocabList(listOPosts) trainMat=[] for postinDoc in listOPosts: trainMat.append(setOfWordseVec(myVocabList, postinDoc)) p0V,p1V,pAb=trainNB0(np.array(trainMat),np.array(listClasses)) print("p0V={0}".format(p0V)) print("p1V={0}".format(p1V)) print("pAb={0}".format(pAb)) testEntry=['love','my','dalmation'] thisDoc=np.array(setOfWordseVec(myVocabList, testEntry)) print(thisDoc) print("vec2Classify*p0Vec={0}".format(thisDoc*p0V)) print(testEntry,'classified as :',classifyNB(thisDoc, p0V, p1V, pAb)) testEntry=['stupid','garbage'] thisDoc=np.array(setOfWordseVec(myVocabList, testEntry)) print(thisDoc) print(testEntry,'classified as :',classifyNB(thisDoc, p0V, p1V, pAb)) if __name__=='__main__': testingNB()
運(yùn)行結(jié)果:
p0V=[-3.25809654 -2.56494936 -3.25809654 -3.25809654 -2.56494936 -2.56494936
-3.25809654 -2.56494936 -2.56494936 -3.25809654 -2.56494936 -2.56494936
-2.56494936 -2.56494936 -1.87180218 -2.56494936 -2.56494936 -2.56494936
-2.56494936 -2.56494936 -2.56494936 -3.25809654 -3.25809654 -2.56494936
-2.56494936 -3.25809654 -2.15948425 -2.56494936 -3.25809654 -2.56494936
-3.25809654 -3.25809654]
p1V=[-2.35137526 -3.04452244 -1.94591015 -2.35137526 -1.94591015 -3.04452244
-2.35137526 -3.04452244 -3.04452244 -1.65822808 -3.04452244 -3.04452244
-2.35137526 -3.04452244 -3.04452244 -3.04452244 -3.04452244 -3.04452244
-3.04452244 -3.04452244 -3.04452244 -2.35137526 -2.35137526 -3.04452244
-3.04452244 -2.35137526 -2.35137526 -3.04452244 -2.35137526 -2.35137526
-2.35137526 -2.35137526]
pAb=0.5
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
vec2Classify*p0Vec=[-0. -0. -0. -0. -0. -0. -0.
-0. -0. -0. -0. -0. -0. -0.
-1.87180218 -0. -0. -2.56494936 -0. -0. -0.
-0. -0. -0. -0. -0. -0.
-2.56494936 -0. -0. -0. -0. ]
['love', 'my', 'dalmation'] classified as : 0
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
['stupid', 'garbage'] classified as : 1
# -*- coding:utf-8 -*- #! python2 #使用樸素貝葉斯過(guò)濾垃圾郵件 # 1.收集數(shù)據(jù):提供文本文件 # 2.準(zhǔn)備數(shù)據(jù):講文本文件見(jiàn)習(xí)成詞條向量 # 3.分析數(shù)據(jù):檢查詞條確保解析的正確性 # 4.訓(xùn)練算法:使用我們之前簡(jiǎn)歷的trainNB0()函數(shù) # 5.測(cè)試算法:使用classifyNB(),并且對(duì)建一個(gè)新的測(cè)試函數(shù)來(lái)計(jì)算文檔集的錯(cuò)誤率 # 6.使用算法,構(gòu)建一個(gè)完整的程序?qū)σ唤M文檔進(jìn)行分類,將錯(cuò)分的文檔輸出到屏幕上 # import re # mySent='this book is the best book on python or M.L. I hvae ever laid eyes upon.' # print(mySent.split()) # regEx=re.compile('\\W*') # print(regEx.split(mySent)) # emailText=open(path+"email\\ham\\6.txt").read() import numpy as np path=u"C:\\py\\jb51PyDemo\\src\\Demo\\Ch04\\" def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],\ ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],\ ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],\ ['stop', 'posting', 'stupid', 'worthless', 'garbage'],\ ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],\ ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0,1,0,1,0,1] #1 is abusive, 0 not return postingList,classVec def createVocabList(dataset): vocabSet=set([]) for document in dataset: vocabSet=vocabSet|set(document) return list(vocabSet) def setOfWordseVec(vocabList,inputSet): returnVec=[0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)]=1 #vocabList.index() 函數(shù)獲取vocabList列表某個(gè)元素的位置,這段代碼得到一個(gè)只包含0和1的列表 else: print("the word :%s is not in my Vocabulary!"%word) return returnVec def trainNB0(trainMatrix,trainCategory): #創(chuàng)建樸素貝葉斯分類器函數(shù) numTrainDocs=len(trainMatrix) numWords=len(trainMatrix[0]) pAbusive=sum(trainCategory)/float(numTrainDocs) p0Num=np.ones(numWords);p1Num=np.ones(numWords) p0Deom=2.0;p1Deom=2.0 for i in range(numTrainDocs): if trainCategory[i]==1: p1Num+=trainMatrix[i] p1Deom+=sum(trainMatrix[i]) else: p0Num+=trainMatrix[i] p0Deom+=sum(trainMatrix[i]) p1vect=np.log(p1Num/p1Deom) #change to log p0vect=np.log(p0Num/p0Deom) #change to log return p0vect,p1vect,pAbusive def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): p1=sum(vec2Classify*p1Vec)+np.log(pClass1) p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1) if p1>p0: return 1 else: return 0 def textParse(bigString): import re listOfTokens=re.split(r'\W*',bigString) return [tok.lower() for tok in listOfTokens if len(tok)>2] def spamTest(): docList=[];classList=[];fullText=[] for i in range(1,26): wordList=textParse(open(path+"email\\spam\\%d.txt"%i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(1) wordList=textParse(open(path+"email\\ham\\%d.txt"%i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(0) vocabList=createVocabList(docList) trainingSet=range(50);testSet=[] for i in range(10): randIndex=int(np.random.uniform(0,len(trainingSet))) testSet.append(trainingSet[randIndex]) del (trainingSet[randIndex]) trainMat=[];trainClasses=[] for docIndex in trainingSet: trainMat.append(setOfWordseVec(vocabList, docList[docIndex])) trainClasses.append(classList[docIndex]) p0V,p1V,pSpam=trainNB0(np.array(trainMat),np.array(trainClasses)) errorCount=0 for docIndex in testSet: wordVector=setOfWordseVec(vocabList, docList[docIndex]) if classifyNB(np.array(wordVector), p0V, p1V, pSpam)!=classList[docIndex]: errorCount+=1 print 'the error rate is :',float(errorCount)/len(testSet) if __name__=='__main__': spamTest()
運(yùn)行結(jié)果:
the error rate is : 0.0
其中,path路徑所使用到的Ch04文件點(diǎn)擊此處本站下載。
注:本文算法源自《機(jī)器學(xué)習(xí)實(shí)戰(zhàn)》一書。
更多關(guān)于Python相關(guān)內(nèi)容感興趣的讀者可查看本站專題:《Python數(shù)學(xué)運(yùn)算技巧總結(jié)》、《Python數(shù)據(jù)結(jié)構(gòu)與算法教程》、《Python函數(shù)使用技巧總結(jié)》、《Python字符串操作技巧匯總》、《Python入門與進(jìn)階經(jīng)典教程》及《Python文件與目錄操作技巧匯總》
希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。
相關(guān)文章
Python實(shí)現(xiàn)查找二叉搜索樹(shù)第k大的節(jié)點(diǎn)功能示例
這篇文章主要介紹了Python實(shí)現(xiàn)查找二叉搜索樹(shù)第k大的節(jié)點(diǎn)功能,結(jié)合實(shí)例形式分析了Python二叉搜索樹(shù)的定義、查找、遍歷等相關(guān)操作技巧,需要的朋友可以參考下2019-01-01用Python實(shí)現(xiàn)數(shù)據(jù)篩選與匹配實(shí)例
大家好,本篇文章主要講的是用Python實(shí)現(xiàn)數(shù)據(jù)篩選與匹配實(shí)例,感興趣的同學(xué)趕快來(lái)看一看吧,對(duì)你有幫助的話記得收藏一下2022-02-02python tornado微信開(kāi)發(fā)入門代碼
這篇文章主要為大家詳細(xì)介紹了python tornado微信開(kāi)發(fā)入門代碼,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-08-08Python利用imshow制作自定義漸變填充柱狀圖(colorbar)
這篇文章主要介紹了Python利用imshow制作自定義漸變填充柱狀圖(colorbar),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-12-12實(shí)踐Python的爬蟲(chóng)框架Scrapy來(lái)抓取豆瓣電影TOP250
這篇文章主要介紹了實(shí)踐Python的爬蟲(chóng)框架Scrapy來(lái)抓取豆瓣電影TOP250的過(guò)程,文中的環(huán)境基于Windows操作系統(tǒng),需要的朋友可以參考下2016-01-01VScode連接遠(yuǎn)程服務(wù)器上的jupyter notebook的實(shí)現(xiàn)
這篇文章主要介紹了VScode連接遠(yuǎn)程服務(wù)器上的jupyter notebook的實(shí)現(xiàn),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-04-04在Python中操作MongoDB的詳細(xì)教程和案例分享
MongoDB是一個(gè)高性能、開(kāi)源、無(wú)模式的文檔型數(shù)據(jù)庫(kù),非常適合存儲(chǔ)JSON風(fēng)格的數(shù)據(jù),Python作為一種廣泛使用的編程語(yǔ)言,通過(guò)PyMongo庫(kù)可以方便地與MongoDB進(jìn)行交互,本文將詳細(xì)介紹如何在Python中使用PyMongo庫(kù)來(lái)操作MongoDB數(shù)據(jù)庫(kù),需要的朋友可以參考下2024-08-08OpenCV學(xué)習(xí)方框?yàn)V波實(shí)現(xiàn)圖像處理代碼示例
這篇文章主要為大家介紹了OpenCV學(xué)習(xí)如何使用方框?yàn)V波實(shí)現(xiàn)對(duì)圖像處理代碼示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2021-10-10