Python實現(xiàn)的樸素貝葉斯算法經(jīng)典示例【測試可用】
本文實例講述了Python實現(xiàn)的樸素貝葉斯算法。分享給大家供大家參考,具體如下:
代碼主要參考機器學習實戰(zhàn)那本書,發(fā)現(xiàn)最近老外的書確實比中國人寫的好,由淺入深,代碼通俗易懂,不多說上代碼:
#encoding:utf-8
'''''
Created on 2015年9月6日
@author: ZHOUMEIXU204
樸素貝葉斯實現(xiàn)過程
'''
#在該算法中類標簽為1和0,如果是多標簽稍微改動代碼既可
import numpy as np
path=u"D:\\Users\\zhoumeixu204\Desktop\\python語言機器學習\\機器學習實戰(zhàn)代碼 python\\機器學習實戰(zhàn)代碼\\machinelearninginaction\\Ch04\\"
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],\
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],\
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],\
['stop', 'posting', 'stupid', 'worthless', 'garbage'],\
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],\
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
def createVocabList(dataset):
vocabSet=set([])
for document in dataset:
vocabSet=vocabSet|set(document)
return list(vocabSet)
def setOfWordseVec(vocabList,inputSet):
returnVec=[0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)]=1 #vocabList.index() 函數(shù)獲取vocabList列表某個元素的位置,這段代碼得到一個只包含0和1的列表
else:
print("the word :%s is not in my Vocabulary!"%word)
return returnVec
listOPosts,listClasses=loadDataSet()
myVocabList=createVocabList(listOPosts)
print(len(myVocabList))
print(myVocabList)
print(setOfWordseVec(myVocabList, listOPosts[0]))
print(setOfWordseVec(myVocabList, listOPosts[3]))
#上述代碼是將文本轉化為向量的形式,如果出現(xiàn)則在向量中為1,若不出現(xiàn) ,則為0
def trainNB0(trainMatrix,trainCategory): #創(chuàng)建樸素貝葉斯分類器函數(shù)
numTrainDocs=len(trainMatrix)
numWords=len(trainMatrix[0])
pAbusive=sum(trainCategory)/float(numTrainDocs)
p0Num=np.ones(numWords);p1Num=np.ones(numWords)
p0Deom=2.0;p1Deom=2.0
for i in range(numTrainDocs):
if trainCategory[i]==1:
p1Num+=trainMatrix[i]
p1Deom+=sum(trainMatrix[i])
else:
p0Num+=trainMatrix[i]
p0Deom+=sum(trainMatrix[i])
p1vect=np.log(p1Num/p1Deom) #change to log
p0vect=np.log(p0Num/p0Deom) #change to log
return p0vect,p1vect,pAbusive
listOPosts,listClasses=loadDataSet()
myVocabList=createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWordseVec(myVocabList, postinDoc))
p0V,p1V,pAb=trainNB0(trainMat, listClasses)
if __name__!='__main__':
print("p0的概況")
print (p0V)
print("p1的概率")
print (p1V)
print("pAb的概率")
print (pAb)
運行結果:
32
['him', 'garbage', 'problems', 'take', 'steak', 'quit', 'so', 'is', 'cute', 'posting', 'dog', 'to', 'love', 'licks', 'dalmation', 'flea', 'I', 'please', 'maybe', 'buying', 'my', 'stupid', 'park', 'food', 'stop', 'has', 'ate', 'help', 'how', 'mr', 'worthless', 'not']
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]
# -*- coding:utf-8 -*-
#!python2
#構建樣本分類器testEntry=['love','my','dalmation'] testEntry=['stupid','garbage']到底屬于哪個類別
import numpy as np
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],\
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],\
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],\
['stop', 'posting', 'stupid', 'worthless', 'garbage'],\
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],\
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
def createVocabList(dataset):
vocabSet=set([])
for document in dataset:
vocabSet=vocabSet|set(document)
return list(vocabSet)
def setOfWordseVec(vocabList,inputSet):
returnVec=[0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)]=1 #vocabList.index() 函數(shù)獲取vocabList列表某個元素的位置,這段代碼得到一個只包含0和1的列表
else:
print("the word :%s is not in my Vocabulary!"%word)
return returnVec
def trainNB0(trainMatrix,trainCategory): #創(chuàng)建樸素貝葉斯分類器函數(shù)
numTrainDocs=len(trainMatrix)
numWords=len(trainMatrix[0])
pAbusive=sum(trainCategory)/float(numTrainDocs)
p0Num=np.ones(numWords);p1Num=np.ones(numWords)
p0Deom=2.0;p1Deom=2.0
for i in range(numTrainDocs):
if trainCategory[i]==1:
p1Num+=trainMatrix[i]
p1Deom+=sum(trainMatrix[i])
else:
p0Num+=trainMatrix[i]
p0Deom+=sum(trainMatrix[i])
p1vect=np.log(p1Num/p1Deom) #change to log
p0vect=np.log(p0Num/p0Deom) #change to log
return p0vect,p1vect,pAbusive
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
p1=sum(vec2Classify*p1Vec)+np.log(pClass1)
p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1)
if p1>p0:
return 1
else:
return 0
def testingNB():
listOPosts,listClasses=loadDataSet()
myVocabList=createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWordseVec(myVocabList, postinDoc))
p0V,p1V,pAb=trainNB0(np.array(trainMat),np.array(listClasses))
print("p0V={0}".format(p0V))
print("p1V={0}".format(p1V))
print("pAb={0}".format(pAb))
testEntry=['love','my','dalmation']
thisDoc=np.array(setOfWordseVec(myVocabList, testEntry))
print(thisDoc)
print("vec2Classify*p0Vec={0}".format(thisDoc*p0V))
print(testEntry,'classified as :',classifyNB(thisDoc, p0V, p1V, pAb))
testEntry=['stupid','garbage']
thisDoc=np.array(setOfWordseVec(myVocabList, testEntry))
print(thisDoc)
print(testEntry,'classified as :',classifyNB(thisDoc, p0V, p1V, pAb))
if __name__=='__main__':
testingNB()
運行結果:
p0V=[-3.25809654 -2.56494936 -3.25809654 -3.25809654 -2.56494936 -2.56494936
-3.25809654 -2.56494936 -2.56494936 -3.25809654 -2.56494936 -2.56494936
-2.56494936 -2.56494936 -1.87180218 -2.56494936 -2.56494936 -2.56494936
-2.56494936 -2.56494936 -2.56494936 -3.25809654 -3.25809654 -2.56494936
-2.56494936 -3.25809654 -2.15948425 -2.56494936 -3.25809654 -2.56494936
-3.25809654 -3.25809654]
p1V=[-2.35137526 -3.04452244 -1.94591015 -2.35137526 -1.94591015 -3.04452244
-2.35137526 -3.04452244 -3.04452244 -1.65822808 -3.04452244 -3.04452244
-2.35137526 -3.04452244 -3.04452244 -3.04452244 -3.04452244 -3.04452244
-3.04452244 -3.04452244 -3.04452244 -2.35137526 -2.35137526 -3.04452244
-3.04452244 -2.35137526 -2.35137526 -3.04452244 -2.35137526 -2.35137526
-2.35137526 -2.35137526]
pAb=0.5
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
vec2Classify*p0Vec=[-0. -0. -0. -0. -0. -0. -0.
-0. -0. -0. -0. -0. -0. -0.
-1.87180218 -0. -0. -2.56494936 -0. -0. -0.
-0. -0. -0. -0. -0. -0.
-2.56494936 -0. -0. -0. -0. ]
['love', 'my', 'dalmation'] classified as : 0
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
['stupid', 'garbage'] classified as : 1
# -*- coding:utf-8 -*-
#! python2
#使用樸素貝葉斯過濾垃圾郵件
# 1.收集數(shù)據(jù):提供文本文件
# 2.準備數(shù)據(jù):講文本文件見習成詞條向量
# 3.分析數(shù)據(jù):檢查詞條確保解析的正確性
# 4.訓練算法:使用我們之前簡歷的trainNB0()函數(shù)
# 5.測試算法:使用classifyNB(),并且對建一個新的測試函數(shù)來計算文檔集的錯誤率
# 6.使用算法,構建一個完整的程序對一組文檔進行分類,將錯分的文檔輸出到屏幕上
# import re
# mySent='this book is the best book on python or M.L. I hvae ever laid eyes upon.'
# print(mySent.split())
# regEx=re.compile('\\W*')
# print(regEx.split(mySent))
# emailText=open(path+"email\\ham\\6.txt").read()
import numpy as np
path=u"C:\\py\\jb51PyDemo\\src\\Demo\\Ch04\\"
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],\
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],\
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],\
['stop', 'posting', 'stupid', 'worthless', 'garbage'],\
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],\
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
def createVocabList(dataset):
vocabSet=set([])
for document in dataset:
vocabSet=vocabSet|set(document)
return list(vocabSet)
def setOfWordseVec(vocabList,inputSet):
returnVec=[0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)]=1 #vocabList.index() 函數(shù)獲取vocabList列表某個元素的位置,這段代碼得到一個只包含0和1的列表
else:
print("the word :%s is not in my Vocabulary!"%word)
return returnVec
def trainNB0(trainMatrix,trainCategory): #創(chuàng)建樸素貝葉斯分類器函數(shù)
numTrainDocs=len(trainMatrix)
numWords=len(trainMatrix[0])
pAbusive=sum(trainCategory)/float(numTrainDocs)
p0Num=np.ones(numWords);p1Num=np.ones(numWords)
p0Deom=2.0;p1Deom=2.0
for i in range(numTrainDocs):
if trainCategory[i]==1:
p1Num+=trainMatrix[i]
p1Deom+=sum(trainMatrix[i])
else:
p0Num+=trainMatrix[i]
p0Deom+=sum(trainMatrix[i])
p1vect=np.log(p1Num/p1Deom) #change to log
p0vect=np.log(p0Num/p0Deom) #change to log
return p0vect,p1vect,pAbusive
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
p1=sum(vec2Classify*p1Vec)+np.log(pClass1)
p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1)
if p1>p0:
return 1
else:
return 0
def textParse(bigString):
import re
listOfTokens=re.split(r'\W*',bigString)
return [tok.lower() for tok in listOfTokens if len(tok)>2]
def spamTest():
docList=[];classList=[];fullText=[]
for i in range(1,26):
wordList=textParse(open(path+"email\\spam\\%d.txt"%i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList=textParse(open(path+"email\\ham\\%d.txt"%i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList=createVocabList(docList)
trainingSet=range(50);testSet=[]
for i in range(10):
randIndex=int(np.random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del (trainingSet[randIndex])
trainMat=[];trainClasses=[]
for docIndex in trainingSet:
trainMat.append(setOfWordseVec(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam=trainNB0(np.array(trainMat),np.array(trainClasses))
errorCount=0
for docIndex in testSet:
wordVector=setOfWordseVec(vocabList, docList[docIndex])
if classifyNB(np.array(wordVector), p0V, p1V, pSpam)!=classList[docIndex]:
errorCount+=1
print 'the error rate is :',float(errorCount)/len(testSet)
if __name__=='__main__':
spamTest()
運行結果:
the error rate is : 0.0
其中,path路徑所使用到的Ch04文件點擊此處本站下載。
注:本文算法源自《機器學習實戰(zhàn)》一書。
更多關于Python相關內容感興趣的讀者可查看本站專題:《Python數(shù)學運算技巧總結》、《Python數(shù)據(jù)結構與算法教程》、《Python函數(shù)使用技巧總結》、《Python字符串操作技巧匯總》、《Python入門與進階經(jīng)典教程》及《Python文件與目錄操作技巧匯總》
希望本文所述對大家Python程序設計有所幫助。
相關文章
Python實現(xiàn)查找二叉搜索樹第k大的節(jié)點功能示例
這篇文章主要介紹了Python實現(xiàn)查找二叉搜索樹第k大的節(jié)點功能,結合實例形式分析了Python二叉搜索樹的定義、查找、遍歷等相關操作技巧,需要的朋友可以參考下2019-01-01
用Python實現(xiàn)數(shù)據(jù)篩選與匹配實例
大家好,本篇文章主要講的是用Python實現(xiàn)數(shù)據(jù)篩選與匹配實例,感興趣的同學趕快來看一看吧,對你有幫助的話記得收藏一下2022-02-02
Python利用imshow制作自定義漸變填充柱狀圖(colorbar)
這篇文章主要介紹了Python利用imshow制作自定義漸變填充柱狀圖(colorbar),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-12-12
實踐Python的爬蟲框架Scrapy來抓取豆瓣電影TOP250
這篇文章主要介紹了實踐Python的爬蟲框架Scrapy來抓取豆瓣電影TOP250的過程,文中的環(huán)境基于Windows操作系統(tǒng),需要的朋友可以參考下2016-01-01
VScode連接遠程服務器上的jupyter notebook的實現(xiàn)
這篇文章主要介紹了VScode連接遠程服務器上的jupyter notebook的實現(xiàn),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-04-04

