欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python實(shí)現(xiàn)的樸素貝葉斯算法經(jīng)典示例【測(cè)試可用】

 更新時(shí)間:2018年06月13日 12:07:37   作者:旭旭_哥  
這篇文章主要介紹了Python實(shí)現(xiàn)的樸素貝葉斯算法,結(jié)合實(shí)例形式詳細(xì)分析了Python實(shí)現(xiàn)與使用樸素貝葉斯算法的具體操作步驟與相關(guān)實(shí)現(xiàn)技巧,需要的朋友可以參考下

本文實(shí)例講述了Python實(shí)現(xiàn)的樸素貝葉斯算法。分享給大家供大家參考,具體如下:

代碼主要參考機(jī)器學(xué)習(xí)實(shí)戰(zhàn)那本書,發(fā)現(xiàn)最近老外的書確實(shí)比中國(guó)人寫的好,由淺入深,代碼通俗易懂,不多說(shuō)上代碼:

#encoding:utf-8
'''''
Created on 2015年9月6日
@author: ZHOUMEIXU204
樸素貝葉斯實(shí)現(xiàn)過(guò)程
'''
#在該算法中類標(biāo)簽為1和0,如果是多標(biāo)簽稍微改動(dòng)代碼既可
import numpy as np
path=u"D:\\Users\\zhoumeixu204\Desktop\\python語(yǔ)言機(jī)器學(xué)習(xí)\\機(jī)器學(xué)習(xí)實(shí)戰(zhàn)代碼  python\\機(jī)器學(xué)習(xí)實(shí)戰(zhàn)代碼\\machinelearninginaction\\Ch04\\"
def loadDataSet():
  postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],\
         ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],\
         ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],\
         ['stop', 'posting', 'stupid', 'worthless', 'garbage'],\
         ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],\
         ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
  classVec = [0,1,0,1,0,1]  #1 is abusive, 0 not
  return postingList,classVec
def createVocabList(dataset):
  vocabSet=set([])
  for document in dataset:
    vocabSet=vocabSet|set(document)
  return list(vocabSet)
def setOfWordseVec(vocabList,inputSet):
  returnVec=[0]*len(vocabList)
  for word in inputSet:
    if word in vocabList:
      returnVec[vocabList.index(word)]=1  #vocabList.index() 函數(shù)獲取vocabList列表某個(gè)元素的位置,這段代碼得到一個(gè)只包含0和1的列表
    else:
      print("the word :%s is not in my Vocabulary!"%word)
  return returnVec
listOPosts,listClasses=loadDataSet()
myVocabList=createVocabList(listOPosts)
print(len(myVocabList))
print(myVocabList)
print(setOfWordseVec(myVocabList, listOPosts[0]))
print(setOfWordseVec(myVocabList, listOPosts[3]))
#上述代碼是將文本轉(zhuǎn)化為向量的形式,如果出現(xiàn)則在向量中為1,若不出現(xiàn) ,則為0
def trainNB0(trainMatrix,trainCategory):  #創(chuàng)建樸素貝葉斯分類器函數(shù)
  numTrainDocs=len(trainMatrix)
  numWords=len(trainMatrix[0])
  pAbusive=sum(trainCategory)/float(numTrainDocs)
  p0Num=np.ones(numWords);p1Num=np.ones(numWords)
  p0Deom=2.0;p1Deom=2.0
  for i in range(numTrainDocs):
    if trainCategory[i]==1:
      p1Num+=trainMatrix[i]
      p1Deom+=sum(trainMatrix[i])
    else:
      p0Num+=trainMatrix[i]
      p0Deom+=sum(trainMatrix[i])
  p1vect=np.log(p1Num/p1Deom)  #change to log
  p0vect=np.log(p0Num/p0Deom)  #change to log
  return p0vect,p1vect,pAbusive
listOPosts,listClasses=loadDataSet()
myVocabList=createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
  trainMat.append(setOfWordseVec(myVocabList, postinDoc))
p0V,p1V,pAb=trainNB0(trainMat, listClasses)
if __name__!='__main__':
  print("p0的概況")
  print (p0V)
  print("p1的概率")
  print (p1V)
  print("pAb的概率")
  print (pAb)

運(yùn)行結(jié)果:

32
['him', 'garbage', 'problems', 'take', 'steak', 'quit', 'so', 'is', 'cute', 'posting', 'dog', 'to', 'love', 'licks', 'dalmation', 'flea', 'I', 'please', 'maybe', 'buying', 'my', 'stupid', 'park', 'food', 'stop', 'has', 'ate', 'help', 'how', 'mr', 'worthless', 'not']
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]

# -*- coding:utf-8 -*-
#!python2
#構(gòu)建樣本分類器testEntry=['love','my','dalmation'] testEntry=['stupid','garbage']到底屬于哪個(gè)類別
import numpy as np
def loadDataSet():
  postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],\
         ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],\
         ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],\
         ['stop', 'posting', 'stupid', 'worthless', 'garbage'],\
         ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],\
         ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
  classVec = [0,1,0,1,0,1]  #1 is abusive, 0 not
  return postingList,classVec
def createVocabList(dataset):
  vocabSet=set([])
  for document in dataset:
    vocabSet=vocabSet|set(document)
  return list(vocabSet)
def setOfWordseVec(vocabList,inputSet):
  returnVec=[0]*len(vocabList)
  for word in inputSet:
    if word in vocabList:
      returnVec[vocabList.index(word)]=1  #vocabList.index() 函數(shù)獲取vocabList列表某個(gè)元素的位置,這段代碼得到一個(gè)只包含0和1的列表
    else:
      print("the word :%s is not in my Vocabulary!"%word)
  return returnVec
def trainNB0(trainMatrix,trainCategory):  #創(chuàng)建樸素貝葉斯分類器函數(shù)
  numTrainDocs=len(trainMatrix)
  numWords=len(trainMatrix[0])
  pAbusive=sum(trainCategory)/float(numTrainDocs)
  p0Num=np.ones(numWords);p1Num=np.ones(numWords)
  p0Deom=2.0;p1Deom=2.0
  for i in range(numTrainDocs):
    if trainCategory[i]==1:
      p1Num+=trainMatrix[i]
      p1Deom+=sum(trainMatrix[i])
    else:
      p0Num+=trainMatrix[i]
      p0Deom+=sum(trainMatrix[i])
  p1vect=np.log(p1Num/p1Deom)  #change to log
  p0vect=np.log(p0Num/p0Deom)  #change to log
  return p0vect,p1vect,pAbusive
def  classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
  p1=sum(vec2Classify*p1Vec)+np.log(pClass1)
  p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1)
  if p1>p0:
    return 1
  else:
    return 0
def testingNB():
  listOPosts,listClasses=loadDataSet()
  myVocabList=createVocabList(listOPosts)
  trainMat=[]
  for postinDoc in listOPosts:
    trainMat.append(setOfWordseVec(myVocabList, postinDoc))
  p0V,p1V,pAb=trainNB0(np.array(trainMat),np.array(listClasses))
  print("p0V={0}".format(p0V))
  print("p1V={0}".format(p1V))
  print("pAb={0}".format(pAb))
  testEntry=['love','my','dalmation']
  thisDoc=np.array(setOfWordseVec(myVocabList, testEntry))
  print(thisDoc)
  print("vec2Classify*p0Vec={0}".format(thisDoc*p0V))
  print(testEntry,'classified as :',classifyNB(thisDoc, p0V, p1V, pAb))
  testEntry=['stupid','garbage']
  thisDoc=np.array(setOfWordseVec(myVocabList, testEntry))
  print(thisDoc)
  print(testEntry,'classified as :',classifyNB(thisDoc, p0V, p1V, pAb))
if __name__=='__main__':
  testingNB()

運(yùn)行結(jié)果:

p0V=[-3.25809654 -2.56494936 -3.25809654 -3.25809654 -2.56494936 -2.56494936
 -3.25809654 -2.56494936 -2.56494936 -3.25809654 -2.56494936 -2.56494936
 -2.56494936 -2.56494936 -1.87180218 -2.56494936 -2.56494936 -2.56494936
 -2.56494936 -2.56494936 -2.56494936 -3.25809654 -3.25809654 -2.56494936
 -2.56494936 -3.25809654 -2.15948425 -2.56494936 -3.25809654 -2.56494936
 -3.25809654 -3.25809654]
p1V=[-2.35137526 -3.04452244 -1.94591015 -2.35137526 -1.94591015 -3.04452244
 -2.35137526 -3.04452244 -3.04452244 -1.65822808 -3.04452244 -3.04452244
 -2.35137526 -3.04452244 -3.04452244 -3.04452244 -3.04452244 -3.04452244
 -3.04452244 -3.04452244 -3.04452244 -2.35137526 -2.35137526 -3.04452244
 -3.04452244 -2.35137526 -2.35137526 -3.04452244 -2.35137526 -2.35137526
 -2.35137526 -2.35137526]
pAb=0.5
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
vec2Classify*p0Vec=[-0.         -0.         -0.         -0.         -0.         -0.         -0.
 -0.         -0.         -0.         -0.         -0.         -0.         -0.
 -1.87180218 -0.         -0.         -2.56494936 -0.         -0.         -0.
 -0.         -0.         -0.         -0.         -0.         -0.
 -2.56494936 -0.         -0.         -0.         -0.        ]
['love', 'my', 'dalmation'] classified as : 0
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
['stupid', 'garbage'] classified as : 1

# -*- coding:utf-8 -*-
#! python2
#使用樸素貝葉斯過(guò)濾垃圾郵件
# 1.收集數(shù)據(jù):提供文本文件
# 2.準(zhǔn)備數(shù)據(jù):講文本文件見(jiàn)習(xí)成詞條向量
# 3.分析數(shù)據(jù):檢查詞條確保解析的正確性
# 4.訓(xùn)練算法:使用我們之前簡(jiǎn)歷的trainNB0()函數(shù)
# 5.測(cè)試算法:使用classifyNB(),并且對(duì)建一個(gè)新的測(cè)試函數(shù)來(lái)計(jì)算文檔集的錯(cuò)誤率
# 6.使用算法,構(gòu)建一個(gè)完整的程序?qū)σ唤M文檔進(jìn)行分類,將錯(cuò)分的文檔輸出到屏幕上
# import re
# mySent='this book is the best book on python or M.L. I hvae ever laid eyes upon.'
# print(mySent.split())
# regEx=re.compile('\\W*')
# print(regEx.split(mySent))
# emailText=open(path+"email\\ham\\6.txt").read()
import numpy as np
path=u"C:\\py\\jb51PyDemo\\src\\Demo\\Ch04\\"
def loadDataSet():
  postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],\
         ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],\
         ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],\
         ['stop', 'posting', 'stupid', 'worthless', 'garbage'],\
         ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],\
         ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
  classVec = [0,1,0,1,0,1]  #1 is abusive, 0 not
  return postingList,classVec
def createVocabList(dataset):
  vocabSet=set([])
  for document in dataset:
    vocabSet=vocabSet|set(document)
  return list(vocabSet)
def setOfWordseVec(vocabList,inputSet):
  returnVec=[0]*len(vocabList)
  for word in inputSet:
    if word in vocabList:
      returnVec[vocabList.index(word)]=1  #vocabList.index() 函數(shù)獲取vocabList列表某個(gè)元素的位置,這段代碼得到一個(gè)只包含0和1的列表
    else:
      print("the word :%s is not in my Vocabulary!"%word)
  return returnVec
def trainNB0(trainMatrix,trainCategory):  #創(chuàng)建樸素貝葉斯分類器函數(shù)
  numTrainDocs=len(trainMatrix)
  numWords=len(trainMatrix[0])
  pAbusive=sum(trainCategory)/float(numTrainDocs)
  p0Num=np.ones(numWords);p1Num=np.ones(numWords)
  p0Deom=2.0;p1Deom=2.0
  for i in range(numTrainDocs):
    if trainCategory[i]==1:
      p1Num+=trainMatrix[i]
      p1Deom+=sum(trainMatrix[i])
    else:
      p0Num+=trainMatrix[i]
      p0Deom+=sum(trainMatrix[i])
  p1vect=np.log(p1Num/p1Deom)  #change to log
  p0vect=np.log(p0Num/p0Deom)  #change to log
  return p0vect,p1vect,pAbusive
def  classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
  p1=sum(vec2Classify*p1Vec)+np.log(pClass1)
  p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1)
  if p1>p0:
    return 1
  else:
    return 0
def textParse(bigString):
  import re
  listOfTokens=re.split(r'\W*',bigString)
  return [tok.lower() for tok in listOfTokens if len(tok)>2]
def spamTest():
  docList=[];classList=[];fullText=[]
  for i in range(1,26):
    wordList=textParse(open(path+"email\\spam\\%d.txt"%i).read())
    docList.append(wordList)
    fullText.extend(wordList)
    classList.append(1)
    wordList=textParse(open(path+"email\\ham\\%d.txt"%i).read())
    docList.append(wordList)
    fullText.extend(wordList)
    classList.append(0)
  vocabList=createVocabList(docList)
  trainingSet=range(50);testSet=[]
  for i in range(10):
    randIndex=int(np.random.uniform(0,len(trainingSet)))
    testSet.append(trainingSet[randIndex])
    del (trainingSet[randIndex])
  trainMat=[];trainClasses=[]
  for  docIndex in trainingSet:
    trainMat.append(setOfWordseVec(vocabList, docList[docIndex]))
    trainClasses.append(classList[docIndex])
  p0V,p1V,pSpam=trainNB0(np.array(trainMat),np.array(trainClasses))
  errorCount=0
  for  docIndex in testSet:
    wordVector=setOfWordseVec(vocabList, docList[docIndex])
    if classifyNB(np.array(wordVector), p0V, p1V, pSpam)!=classList[docIndex]:
      errorCount+=1
  print 'the error rate is :',float(errorCount)/len(testSet)
if __name__=='__main__':
  spamTest()

運(yùn)行結(jié)果:

the error rate is : 0.0

其中,path路徑所使用到的Ch04文件點(diǎn)擊此處本站下載

注:本文算法源自《機(jī)器學(xué)習(xí)實(shí)戰(zhàn)》一書。

更多關(guān)于Python相關(guān)內(nèi)容感興趣的讀者可查看本站專題:《Python數(shù)學(xué)運(yùn)算技巧總結(jié)》、《Python數(shù)據(jù)結(jié)構(gòu)與算法教程》、《Python函數(shù)使用技巧總結(jié)》、《Python字符串操作技巧匯總》、《Python入門與進(jìn)階經(jīng)典教程》及《Python文件與目錄操作技巧匯總

希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。

相關(guān)文章

  • Python實(shí)現(xiàn)查找二叉搜索樹(shù)第k大的節(jié)點(diǎn)功能示例

    Python實(shí)現(xiàn)查找二叉搜索樹(shù)第k大的節(jié)點(diǎn)功能示例

    這篇文章主要介紹了Python實(shí)現(xiàn)查找二叉搜索樹(shù)第k大的節(jié)點(diǎn)功能,結(jié)合實(shí)例形式分析了Python二叉搜索樹(shù)的定義、查找、遍歷等相關(guān)操作技巧,需要的朋友可以參考下
    2019-01-01
  • 用Python實(shí)現(xiàn)數(shù)據(jù)篩選與匹配實(shí)例

    用Python實(shí)現(xiàn)數(shù)據(jù)篩選與匹配實(shí)例

    大家好,本篇文章主要講的是用Python實(shí)現(xiàn)數(shù)據(jù)篩選與匹配實(shí)例,感興趣的同學(xué)趕快來(lái)看一看吧,對(duì)你有幫助的話記得收藏一下
    2022-02-02
  • python tornado微信開(kāi)發(fā)入門代碼

    python tornado微信開(kāi)發(fā)入門代碼

    這篇文章主要為大家詳細(xì)介紹了python tornado微信開(kāi)發(fā)入門代碼,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2018-08-08
  • Python如何生成隨機(jī)高斯模糊圖片詳解

    Python如何生成隨機(jī)高斯模糊圖片詳解

    這篇文章主要給大家介紹了關(guān)于高斯模糊的原理以及python實(shí)現(xiàn)的相關(guān)資料,Python使用opencv庫(kù)生成模糊圖像還是很方便的,需要的朋友可以參考下
    2021-05-05
  • Python利用imshow制作自定義漸變填充柱狀圖(colorbar)

    Python利用imshow制作自定義漸變填充柱狀圖(colorbar)

    這篇文章主要介紹了Python利用imshow制作自定義漸變填充柱狀圖(colorbar),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2020-12-12
  • 實(shí)踐Python的爬蟲(chóng)框架Scrapy來(lái)抓取豆瓣電影TOP250

    實(shí)踐Python的爬蟲(chóng)框架Scrapy來(lái)抓取豆瓣電影TOP250

    這篇文章主要介紹了實(shí)踐Python的爬蟲(chóng)框架Scrapy來(lái)抓取豆瓣電影TOP250的過(guò)程,文中的環(huán)境基于Windows操作系統(tǒng),需要的朋友可以參考下
    2016-01-01
  • VScode連接遠(yuǎn)程服務(wù)器上的jupyter notebook的實(shí)現(xiàn)

    VScode連接遠(yuǎn)程服務(wù)器上的jupyter notebook的實(shí)現(xiàn)

    這篇文章主要介紹了VScode連接遠(yuǎn)程服務(wù)器上的jupyter notebook的實(shí)現(xiàn),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2020-04-04
  • Python深拷貝與淺拷貝引用

    Python深拷貝與淺拷貝引用

    這篇文章主要介紹了Python深拷貝與淺拷貝引用,Python并沒(méi)有拷貝這個(gè)對(duì)象,而只是拷貝了這個(gè)對(duì)象的引用,下文具體的相關(guān)介紹需要的小伙伴可以參考一下
    2022-04-04
  • 在Python中操作MongoDB的詳細(xì)教程和案例分享

    在Python中操作MongoDB的詳細(xì)教程和案例分享

    MongoDB是一個(gè)高性能、開(kāi)源、無(wú)模式的文檔型數(shù)據(jù)庫(kù),非常適合存儲(chǔ)JSON風(fēng)格的數(shù)據(jù),Python作為一種廣泛使用的編程語(yǔ)言,通過(guò)PyMongo庫(kù)可以方便地與MongoDB進(jìn)行交互,本文將詳細(xì)介紹如何在Python中使用PyMongo庫(kù)來(lái)操作MongoDB數(shù)據(jù)庫(kù),需要的朋友可以參考下
    2024-08-08
  • OpenCV學(xué)習(xí)方框?yàn)V波實(shí)現(xiàn)圖像處理代碼示例

    OpenCV學(xué)習(xí)方框?yàn)V波實(shí)現(xiàn)圖像處理代碼示例

    這篇文章主要為大家介紹了OpenCV學(xué)習(xí)如何使用方框?yàn)V波實(shí)現(xiàn)對(duì)圖像處理代碼示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步
    2021-10-10

最新評(píng)論