使用pandas read_table讀取csv文件的方法
read_csv是pandas中專門用于csv文件讀取的功能,不過這并不是唯一的處理方式。pandas中還有讀取表格的通用函數(shù)read_table。
接下來使用read_table功能作一下csv文件的讀取嘗試,使用此功能的時(shí)候需要指定文件中的內(nèi)容分隔符。
查看csv文件的內(nèi)容如下;
In [10]: cat data.csv index,name,comment,,,, 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,coment_03,,,, 4,name_04,coment_04,,,, 5,name_05,coment_05,,,, 6,name_06,coment_06,,,, 7,name_07,coment_07,,,, 8,name_08,coment_08,,,, 9,name_09,coment_09,,,, 10,name_10,coment_10,,,, 11,name_11,coment_11,,,, 12,name_12,coment_12,,,, 13,name_13,coment_13,,,, 14,name_14,coment_14,,,, 15,name_15,coment_15,,,, 16,name_16,coment_16,,,, 17,name_17,coment_17,,,, 18,name_18,coment_18,,,, 19,name_19,coment_19,,,, 20,name_20,coment_20,,,, 21,name_21,coment_21,,,,
使用pandas讀取文件內(nèi)容如下:In [11]: data1 = pd.read_table('data.csv',sep=',')
In [12]: type(data1) Out[12]: pandas.core.frame.DataFrame
In [13]: data1 Out[13]: index name comment Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 6 0 1 name_01 coment_01 NaN NaN NaN NaN 1 2 name_02 coment_02 NaN NaN NaN NaN 2 3 name_03 coment_03 NaN NaN NaN NaN 3 4 name_04 coment_04 NaN NaN NaN NaN 4 5 name_05 coment_05 NaN NaN NaN NaN 5 6 name_06 coment_06 NaN NaN NaN NaN 6 7 name_07 coment_07 NaN NaN NaN NaN 7 8 name_08 coment_08 NaN NaN NaN NaN 8 9 name_09 coment_09 NaN NaN NaN NaN 9 10 name_10 coment_10 NaN NaN NaN NaN 10 11 name_11 coment_11 NaN NaN NaN NaN 11 12 name_12 coment_12 NaN NaN NaN NaN 12 13 name_13 coment_13 NaN NaN NaN NaN 13 14 name_14 coment_14 NaN NaN NaN NaN 14 15 name_15 coment_15 NaN NaN NaN NaN 15 16 name_16 coment_16 NaN NaN NaN NaN 16 17 name_17 coment_17 NaN NaN NaN NaN 17 18 name_18 coment_18 NaN NaN NaN NaN 18 19 name_19 coment_19 NaN NaN NaN NaN 19 20 name_20 coment_20 NaN NaN NaN NaN 20 21 name_21 coment_21 NaN NaN NaN NaN
不過在幾番嘗試下來,發(fā)現(xiàn)這個(gè)分隔符缺省的時(shí)候倒是也能夠讀出數(shù)據(jù)。
In [16]: data2 = pd.read_table('data.csv')
In [17]: data2 Out[17]: index,name,comment,,,, 0 1,name_01,coment_01,,,, 1 2,name_02,coment_02,,,, 2 3,name_03,coment_03,,,, 3 4,name_04,coment_04,,,, 4 5,name_05,coment_05,,,, 5 6,name_06,coment_06,,,, 6 7,name_07,coment_07,,,, 7 8,name_08,coment_08,,,, 8 9,name_09,coment_09,,,, 9 10,name_10,coment_10,,,, 10 11,name_11,coment_11,,,, 11 12,name_12,coment_12,,,, 12 13,name_13,coment_13,,,, 13 14,name_14,coment_14,,,, 14 15,name_15,coment_15,,,, 15 16,name_16,coment_16,,,, 16 17,name_17,coment_17,,,, 17 18,name_18,coment_18,,,, 18 19,name_19,coment_19,,,, 19 20,name_20,coment_20,,,, 20 21,name_21,coment_21,,,,
不知道此功能對(duì)其他格式的數(shù)據(jù)的讀取功能會(huì)不會(huì)有自動(dòng)識(shí)別的功能,需要繼續(xù)確認(rèn)。
以上這篇使用pandas read_table讀取csv文件的方法就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
python 數(shù)據(jù)庫查詢返回list或tuple實(shí)例
這篇文章主要介紹了python 數(shù)據(jù)庫查詢返回list或tuple實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2020-05-05Python機(jī)器學(xué)習(xí)特征重要性分析的8個(gè)常用方法實(shí)例探究
本文詳細(xì)介紹8種常用的方法,涵蓋了基于決策樹、集成學(xué)習(xí)模型以及統(tǒng)計(jì)學(xué)方法的特征重要性分析,從決策樹模型到SHAP值,深入探討每種方法的原理和示例,幫助全面了解如何評(píng)估特征的重要性,將能更好地理解特征對(duì)模型預(yù)測(cè)的貢獻(xiàn),為提升模型性能和解釋模型決策提供有力支持2024-01-01Python?dataframe如何設(shè)置index
這篇文章主要介紹了Python?dataframe如何設(shè)置index,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2022-05-05Python中的裝飾器鏈(decorator chain)詳解
在Python中,裝飾器是一種高級(jí)功能,它允許你在不修改函數(shù)或類代碼的情況下,為它們添加額外的功能,裝飾器通常用于日志記錄、性能測(cè)量、權(quán)限檢查等場(chǎng)景,當(dāng)多個(gè)裝飾器應(yīng)用于同一個(gè)函數(shù)或類時(shí),形成裝飾器鏈,這篇文章主要介紹了Python中的裝飾器鏈詳解,需要的朋友可以參考下2024-06-06Python腳本完成post接口測(cè)試的實(shí)例
今天小編就為大家分享一篇Python腳本完成post接口測(cè)試的實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-12-12