欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python基于sklearn庫(kù)的分類(lèi)算法簡(jiǎn)單應(yīng)用示例

 更新時(shí)間:2018年07月09日 14:51:48   作者:Bryan__  
這篇文章主要介紹了Python基于sklearn庫(kù)的分類(lèi)算法,結(jié)合簡(jiǎn)單實(shí)例形式分析了Python使用sklearn庫(kù)封裝樸素貝葉斯、K近鄰、邏輯回歸、SVM向量機(jī)等常見(jiàn)機(jī)器學(xué)習(xí)算法的分類(lèi)調(diào)用相關(guān)操作技巧,需要的朋友可以參考下

本文實(shí)例講述了Python基于sklearn庫(kù)的分類(lèi)算法簡(jiǎn)單應(yīng)用。分享給大家供大家參考,具體如下:

scikit-learn已經(jīng)包含在Anaconda中。也可以在官方下載源碼包進(jìn)行安裝。本文代碼里封裝了如下機(jī)器學(xué)習(xí)算法,我們修改數(shù)據(jù)加載函數(shù),即可一鍵測(cè)試:

# coding=gbk
'''
Created on 2016年6月4日
@author: bryan
'''
import time
from sklearn import metrics
import pickle as pickle
import pandas as pd
# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
  from sklearn.naive_bayes import MultinomialNB
  model = MultinomialNB(alpha=0.01)
  model.fit(train_x, train_y)
  return model
# KNN Classifier
def knn_classifier(train_x, train_y):
  from sklearn.neighbors import KNeighborsClassifier
  model = KNeighborsClassifier()
  model.fit(train_x, train_y)
  return model
# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
  from sklearn.linear_model import LogisticRegression
  model = LogisticRegression(penalty='l2')
  model.fit(train_x, train_y)
  return model
# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
  from sklearn.ensemble import RandomForestClassifier
  model = RandomForestClassifier(n_estimators=8)
  model.fit(train_x, train_y)
  return model
# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
  from sklearn import tree
  model = tree.DecisionTreeClassifier()
  model.fit(train_x, train_y)
  return model
# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
  from sklearn.ensemble import GradientBoostingClassifier
  model = GradientBoostingClassifier(n_estimators=200)
  model.fit(train_x, train_y)
  return model
# SVM Classifier
def svm_classifier(train_x, train_y):
  from sklearn.svm import SVC
  model = SVC(kernel='rbf', probability=True)
  model.fit(train_x, train_y)
  return model
# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
  from sklearn.grid_search import GridSearchCV
  from sklearn.svm import SVC
  model = SVC(kernel='rbf', probability=True)
  param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
  grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
  grid_search.fit(train_x, train_y)
  best_parameters = grid_search.best_estimator_.get_params()
  for para, val in list(best_parameters.items()):
    print(para, val)
  model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
  model.fit(train_x, train_y)
  return model
def read_data(data_file):
  data = pd.read_csv(data_file)
  train = data[:int(len(data)*0.9)]
  test = data[int(len(data)*0.9):]
  train_y = train.label
  train_x = train.drop('label', axis=1)
  test_y = test.label
  test_x = test.drop('label', axis=1)
  return train_x, train_y, test_x, test_y
if __name__ == '__main__':
  data_file = "H:\\Research\\data\\trainCG.csv"
  thresh = 0.5
  model_save_file = None
  model_save = {}
  test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT']
  classifiers = {'NB':naive_bayes_classifier,
         'KNN':knn_classifier,
          'LR':logistic_regression_classifier,
          'RF':random_forest_classifier,
          'DT':decision_tree_classifier,
         'SVM':svm_classifier,
        'SVMCV':svm_cross_validation,
         'GBDT':gradient_boosting_classifier
  }
  print('reading training and testing data...')
  train_x, train_y, test_x, test_y = read_data(data_file)
  for classifier in test_classifiers:
    print('******************* %s ********************' % classifier)
    start_time = time.time()
    model = classifiers[classifier](train_x, train_y)
    print('training took %fs!' % (time.time() - start_time))
    predict = model.predict(test_x)
    if model_save_file != None:
      model_save[classifier] = model
    precision = metrics.precision_score(test_y, predict)
    recall = metrics.recall_score(test_y, predict)
    print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))
    accuracy = metrics.accuracy_score(test_y, predict)
    print('accuracy: %.2f%%' % (100 * accuracy))
  if model_save_file != None:
    pickle.dump(model_save, open(model_save_file, 'wb'))

測(cè)試結(jié)果如下:

reading training and testing data...
******************* NB ********************
training took 0.004986s!
precision: 78.08%, recall: 71.25%
accuracy: 74.17%
******************* KNN ********************
training took 0.017545s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%
******************* LR ********************
training took 0.061161s!
precision: 89.16%, recall: 92.50%
accuracy: 90.07%
******************* RF ********************
training took 0.040111s!
precision: 96.39%, recall: 100.00%
accuracy: 98.01%
******************* DT ********************
training took 0.004513s!
precision: 96.20%, recall: 95.00%
accuracy: 95.36%
******************* SVM ********************
training took 0.242145s!
precision: 97.53%, recall: 98.75%
accuracy: 98.01%
******************* SVMCV ********************
Fitting 3 folds for each of 14 candidates, totalling 42 fits
[Parallel(n_jobs=1)]: Done  42 out of  42 | elapsed:    6.8s finished
probability True
verbose False
coef0 0.0
degree 3
tol 0.001
shrinking True
cache_size 200
gamma 0.001
max_iter -1
C 1000
decision_function_shape None
random_state None
class_weight None
kernel rbf
training took 7.434668s!
precision: 98.75%, recall: 98.75%
accuracy: 98.68%
******************* GBDT ********************
training took 0.521916s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%

更多關(guān)于Python相關(guān)內(nèi)容感興趣的讀者可查看本站專(zhuān)題:《Python數(shù)學(xué)運(yùn)算技巧總結(jié)》、《Python數(shù)據(jù)結(jié)構(gòu)與算法教程》、《Python函數(shù)使用技巧總結(jié)》、《Python字符串操作技巧匯總》、《Python入門(mén)與進(jìn)階經(jīng)典教程》及《Python文件與目錄操作技巧匯總

希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。

相關(guān)文章

  • python實(shí)現(xiàn)npy格式文件轉(zhuǎn)換為txt文件操作

    python實(shí)現(xiàn)npy格式文件轉(zhuǎn)換為txt文件操作

    這篇文章主要介紹了python實(shí)現(xiàn)npy格式文件轉(zhuǎn)換為txt文件操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2020-07-07
  • Python正則表達(dá)式函數(shù)match()和search()使用全面指南

    Python正則表達(dá)式函數(shù)match()和search()使用全面指南

    在Python中,正則表達(dá)式是強(qiáng)大的工具,能夠用于文本匹配、搜索和替換,re模塊提供了許多函數(shù)來(lái)處理正則表達(dá)式,其中match()和search()是兩個(gè)常用的函數(shù),本文將深入探討這兩個(gè)函數(shù)的用法、區(qū)別和示例,幫助你更好地理解它們的功能
    2024-01-01
  • Python之指數(shù)與E記法的區(qū)別詳解

    Python之指數(shù)與E記法的區(qū)別詳解

    今天小編就為大家分享一篇Python之指數(shù)與E記法的區(qū)別詳解,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2019-11-11
  • Python?Melt函數(shù)將寬格式的數(shù)據(jù)表轉(zhuǎn)換為長(zhǎng)格式

    Python?Melt函數(shù)將寬格式的數(shù)據(jù)表轉(zhuǎn)換為長(zhǎng)格式

    在數(shù)據(jù)處理和清洗中,melt函數(shù)是Pandas庫(kù)中一個(gè)強(qiáng)大而靈活的工具,它的主要功能是將寬格式的數(shù)據(jù)表轉(zhuǎn)換為長(zhǎng)格式,從而更方便進(jìn)行分析和可視化,本文將深入探討melt函數(shù)的用法、參數(shù)解析以及實(shí)際應(yīng)用場(chǎng)景
    2023-12-12
  • python隨機(jī)3分鐘發(fā)送一次消息完整代碼

    python隨機(jī)3分鐘發(fā)送一次消息完整代碼

    最近我接到這樣的任務(wù)需求有一個(gè)實(shí)時(shí)任務(wù),想要間隔3分鐘發(fā)送,最近的一次消息,接下來(lái)通過(guò)本文給大家分享python隨機(jī)3分鐘發(fā)送一次消息,需要的朋友可以參考下
    2024-03-03
  • python計(jì)算最小優(yōu)先級(jí)隊(duì)列代碼分享

    python計(jì)算最小優(yōu)先級(jí)隊(duì)列代碼分享

    python計(jì)算最小優(yōu)先級(jí)隊(duì)列代碼分享,大家參考使用吧
    2013-12-12
  • Python中使用ElementTree解析XML示例

    Python中使用ElementTree解析XML示例

    這篇文章主要介紹了Python中使用ElementTree解析XML示例,本文同時(shí)講解了XML基本概念介紹、XML幾種解析方法和ElementTree解析實(shí)例,需要的朋友可以參考下
    2015-06-06
  • pymongo中聚合查詢(xún)的使用方法

    pymongo中聚合查詢(xún)的使用方法

    這篇文章主要給大家介紹了關(guān)于pymongo中聚合查詢(xún)的使用方法,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家學(xué)習(xí)或者使用pymongo具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2019-03-03
  • python基礎(chǔ)教程項(xiàng)目二之畫(huà)幅好畫(huà)

    python基礎(chǔ)教程項(xiàng)目二之畫(huà)幅好畫(huà)

    這篇文章主要為大家詳細(xì)介紹了python基礎(chǔ)教程項(xiàng)目二之畫(huà)幅好畫(huà),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2018-04-04
  • 新版pycharm配置運(yùn)行參數(shù)的教程/pycharm2023

    新版pycharm配置運(yùn)行參數(shù)的教程/pycharm2023

    這篇文章主要介紹了新版pycharm配置運(yùn)行參數(shù)的教程/pycharm2023,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2024-01-01

最新評(píng)論