Python基于sklearn庫(kù)的分類(lèi)算法簡(jiǎn)單應(yīng)用示例
本文實(shí)例講述了Python基于sklearn庫(kù)的分類(lèi)算法簡(jiǎn)單應(yīng)用。分享給大家供大家參考,具體如下:
scikit-learn
已經(jīng)包含在Anaconda中。也可以在官方下載源碼包進(jìn)行安裝。本文代碼里封裝了如下機(jī)器學(xué)習(xí)算法,我們修改數(shù)據(jù)加載函數(shù),即可一鍵測(cè)試:
# coding=gbk ''' Created on 2016年6月4日 @author: bryan ''' import time from sklearn import metrics import pickle as pickle import pandas as pd # Multinomial Naive Bayes Classifier def naive_bayes_classifier(train_x, train_y): from sklearn.naive_bayes import MultinomialNB model = MultinomialNB(alpha=0.01) model.fit(train_x, train_y) return model # KNN Classifier def knn_classifier(train_x, train_y): from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier() model.fit(train_x, train_y) return model # Logistic Regression Classifier def logistic_regression_classifier(train_x, train_y): from sklearn.linear_model import LogisticRegression model = LogisticRegression(penalty='l2') model.fit(train_x, train_y) return model # Random Forest Classifier def random_forest_classifier(train_x, train_y): from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=8) model.fit(train_x, train_y) return model # Decision Tree Classifier def decision_tree_classifier(train_x, train_y): from sklearn import tree model = tree.DecisionTreeClassifier() model.fit(train_x, train_y) return model # GBDT(Gradient Boosting Decision Tree) Classifier def gradient_boosting_classifier(train_x, train_y): from sklearn.ensemble import GradientBoostingClassifier model = GradientBoostingClassifier(n_estimators=200) model.fit(train_x, train_y) return model # SVM Classifier def svm_classifier(train_x, train_y): from sklearn.svm import SVC model = SVC(kernel='rbf', probability=True) model.fit(train_x, train_y) return model # SVM Classifier using cross validation def svm_cross_validation(train_x, train_y): from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC model = SVC(kernel='rbf', probability=True) param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]} grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1) grid_search.fit(train_x, train_y) best_parameters = grid_search.best_estimator_.get_params() for para, val in list(best_parameters.items()): print(para, val) model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True) model.fit(train_x, train_y) return model def read_data(data_file): data = pd.read_csv(data_file) train = data[:int(len(data)*0.9)] test = data[int(len(data)*0.9):] train_y = train.label train_x = train.drop('label', axis=1) test_y = test.label test_x = test.drop('label', axis=1) return train_x, train_y, test_x, test_y if __name__ == '__main__': data_file = "H:\\Research\\data\\trainCG.csv" thresh = 0.5 model_save_file = None model_save = {} test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT'] classifiers = {'NB':naive_bayes_classifier, 'KNN':knn_classifier, 'LR':logistic_regression_classifier, 'RF':random_forest_classifier, 'DT':decision_tree_classifier, 'SVM':svm_classifier, 'SVMCV':svm_cross_validation, 'GBDT':gradient_boosting_classifier } print('reading training and testing data...') train_x, train_y, test_x, test_y = read_data(data_file) for classifier in test_classifiers: print('******************* %s ********************' % classifier) start_time = time.time() model = classifiers[classifier](train_x, train_y) print('training took %fs!' % (time.time() - start_time)) predict = model.predict(test_x) if model_save_file != None: model_save[classifier] = model precision = metrics.precision_score(test_y, predict) recall = metrics.recall_score(test_y, predict) print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall)) accuracy = metrics.accuracy_score(test_y, predict) print('accuracy: %.2f%%' % (100 * accuracy)) if model_save_file != None: pickle.dump(model_save, open(model_save_file, 'wb'))
測(cè)試結(jié)果如下:
reading training and testing data...
******************* NB ********************
training took 0.004986s!
precision: 78.08%, recall: 71.25%
accuracy: 74.17%
******************* KNN ********************
training took 0.017545s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%
******************* LR ********************
training took 0.061161s!
precision: 89.16%, recall: 92.50%
accuracy: 90.07%
******************* RF ********************
training took 0.040111s!
precision: 96.39%, recall: 100.00%
accuracy: 98.01%
******************* DT ********************
training took 0.004513s!
precision: 96.20%, recall: 95.00%
accuracy: 95.36%
******************* SVM ********************
training took 0.242145s!
precision: 97.53%, recall: 98.75%
accuracy: 98.01%
******************* SVMCV ********************
Fitting 3 folds for each of 14 candidates, totalling 42 fits
[Parallel(n_jobs=1)]: Done 42 out of 42 | elapsed: 6.8s finished
probability True
verbose False
coef0 0.0
degree 3
tol 0.001
shrinking True
cache_size 200
gamma 0.001
max_iter -1
C 1000
decision_function_shape None
random_state None
class_weight None
kernel rbf
training took 7.434668s!
precision: 98.75%, recall: 98.75%
accuracy: 98.68%
******************* GBDT ********************
training took 0.521916s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%
更多關(guān)于Python相關(guān)內(nèi)容感興趣的讀者可查看本站專(zhuān)題:《Python數(shù)學(xué)運(yùn)算技巧總結(jié)》、《Python數(shù)據(jù)結(jié)構(gòu)與算法教程》、《Python函數(shù)使用技巧總結(jié)》、《Python字符串操作技巧匯總》、《Python入門(mén)與進(jìn)階經(jīng)典教程》及《Python文件與目錄操作技巧匯總》
希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。
相關(guān)文章
python實(shí)現(xiàn)npy格式文件轉(zhuǎn)換為txt文件操作
這篇文章主要介紹了python實(shí)現(xiàn)npy格式文件轉(zhuǎn)換為txt文件操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-07-07Python正則表達(dá)式函數(shù)match()和search()使用全面指南
在Python中,正則表達(dá)式是強(qiáng)大的工具,能夠用于文本匹配、搜索和替換,re模塊提供了許多函數(shù)來(lái)處理正則表達(dá)式,其中match()和search()是兩個(gè)常用的函數(shù),本文將深入探討這兩個(gè)函數(shù)的用法、區(qū)別和示例,幫助你更好地理解它們的功能2024-01-01Python?Melt函數(shù)將寬格式的數(shù)據(jù)表轉(zhuǎn)換為長(zhǎng)格式
在數(shù)據(jù)處理和清洗中,melt函數(shù)是Pandas庫(kù)中一個(gè)強(qiáng)大而靈活的工具,它的主要功能是將寬格式的數(shù)據(jù)表轉(zhuǎn)換為長(zhǎng)格式,從而更方便進(jìn)行分析和可視化,本文將深入探討melt函數(shù)的用法、參數(shù)解析以及實(shí)際應(yīng)用場(chǎng)景2023-12-12python計(jì)算最小優(yōu)先級(jí)隊(duì)列代碼分享
python計(jì)算最小優(yōu)先級(jí)隊(duì)列代碼分享,大家參考使用吧2013-12-12python基礎(chǔ)教程項(xiàng)目二之畫(huà)幅好畫(huà)
這篇文章主要為大家詳細(xì)介紹了python基礎(chǔ)教程項(xiàng)目二之畫(huà)幅好畫(huà),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-04-04新版pycharm配置運(yùn)行參數(shù)的教程/pycharm2023
這篇文章主要介紹了新版pycharm配置運(yùn)行參數(shù)的教程/pycharm2023,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2024-01-01