欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

使用sklearn進(jìn)行對(duì)數(shù)據(jù)標(biāo)準(zhǔn)化、歸一化以及將數(shù)據(jù)還原的方法

 更新時(shí)間:2018年07月11日 10:00:44   作者:Gakki的小馬  
今天小編就為大家分享一篇使用sklearn進(jìn)行對(duì)數(shù)據(jù)標(biāo)準(zhǔn)化、歸一化以及將數(shù)據(jù)還原的方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧

在對(duì)模型訓(xùn)練時(shí),為了讓模型盡快收斂,一件常做的事情就是對(duì)數(shù)據(jù)進(jìn)行預(yù)處理。

這里通過使用sklearn.preprocess模塊進(jìn)行處理。

一、標(biāo)準(zhǔn)化和歸一化的區(qū)別

歸一化其實(shí)就是標(biāo)準(zhǔn)化的一種方式,只不過歸一化是將數(shù)據(jù)映射到了[0,1]這個(gè)區(qū)間中。

標(biāo)準(zhǔn)化則是將數(shù)據(jù)按照比例縮放,使之放到一個(gè)特定區(qū)間中。標(biāo)準(zhǔn)化后的數(shù)據(jù)的均值=0,標(biāo)準(zhǔn)差=1,因而標(biāo)準(zhǔn)化的數(shù)據(jù)可正可負(fù)。

二、使用sklearn進(jìn)行標(biāo)準(zhǔn)化和標(biāo)準(zhǔn)化還原

原理:

即先求出全部數(shù)據(jù)的均值和方差,再進(jìn)行計(jì)算。

最后的結(jié)果均值為0,方差是1,從公式就可以看出。

但是當(dāng)原始數(shù)據(jù)并不符合高斯分布的話,標(biāo)準(zhǔn)化后的數(shù)據(jù)效果并不好。

導(dǎo)入模塊

from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from matplotlib import gridspec
import numpy as np
import matplotlib.pyplot as plt

通過生成隨機(jī)點(diǎn)可以對(duì)比出標(biāo)準(zhǔn)化前后的數(shù)據(jù)分布形狀并沒有發(fā)生變化,只是尺度上縮小了。

cps = np.random.random_integers(0, 100, (100, 2))
 
ss = StandardScaler()
std_cps = ss.fit_transform(cps)
 
gs = gridspec.GridSpec(5,5)
fig = plt.figure()
ax1 = fig.add_subplot(gs[0:2, 1:4])
ax2 = fig.add_subplot(gs[3:5, 1:4])
 
ax1.scatter(cps[:, 0], cps[:, 1])
ax2.scatter(std_cps[:, 0], std_cps[:, 1])
 
plt.show()

sklearn.preprocess.StandardScaler的使用:

先是創(chuàng)建對(duì)象,然后調(diào)用fit_transform()方法,需要傳入一個(gè)如下格式的參數(shù)作為訓(xùn)練集。

X : numpy array of shape [n_samples,n_features]Training set.
data = np.random.uniform(0, 100, 10)[:, np.newaxis]
ss = StandardScaler()
std_data = ss.fit_transform(data)
origin_data = ss.inverse_transform(std_data)
print('data is ',data)
print('after standard ',std_data)
print('after inverse ',origin_data)
print('after standard mean and std is ',np.mean(std_data), np.std(std_data))

通過invers_tainsform()方法就可以得到原來的數(shù)據(jù)。

打印結(jié)果如下:

可以看到生成的數(shù)據(jù)的標(biāo)準(zhǔn)差是1,均值接近0。

data is [[15.72836992]
 [62.0709697 ]
 [94.85738359]
 [98.37108557]
 [ 0.16131774]
 [23.85445883]
 [26.40359246]
 [95.68204855]
 [77.69245742]
 [62.4002485 ]]
after standard [[-1.15085842]
 [ 0.18269178]
 [ 1.12615048]
 [ 1.22726043]
 [-1.59881442]
 [-0.91702287]
 [-0.84366924]
 [ 1.14988096]
 [ 0.63221421]
 [ 0.19216708]]
after inverse [[15.72836992]
 [62.0709697 ]
 [94.85738359]
 [98.37108557]
 [ 0.16131774]
 [23.85445883]
 [26.40359246]
 [95.68204855]
 [77.69245742]
 [62.4002485 ]]
after standard mean and std is -1.8041124150158794e-16 1.0

三、使用sklearn進(jìn)行數(shù)據(jù)的歸一化和歸一化還原

原理:

從上式可以看出歸一化的結(jié)果跟數(shù)據(jù)的最大值最小值有關(guān)。

使用時(shí)類似上面的標(biāo)準(zhǔn)化

data = np.random.uniform(0, 100, 10)[:, np.newaxis]
mm = MinMaxScaler()
mm_data = mm.fit_transform(data)
origin_data = mm.inverse_transform(mm_data)
print('data is ',data)
print('after Min Max ',mm_data)
print('origin data is ',origin_data)

結(jié)果:

G:\Anaconda\python.exe G:/python/DRL/DRL_test/DRL_ALL/Grammar.py
data is [[12.19502214]
 [86.49880021]
 [53.10501326]
 [82.30089405]
 [44.46306969]
 [14.51448347]
 [54.59806596]
 [87.87501465]
 [64.35007178]
 [ 4.96199642]]
after Min Max [[0.08723631]
 [0.98340171]
 [0.58064485]
 [0.93277147]
 [0.47641582]
 [0.11521094]
 [0.59865231]
 [1.  ]
 [0.71626961]
 [0.  ]]
origin data is [[12.19502214]
 [86.49880021]
 [53.10501326]
 [82.30089405]
 [44.46306969]
 [14.51448347]
 [54.59806596]
 [87.87501465]
 [64.35007178]
 [ 4.96199642]]
 
Process finished with exit code 0

其他標(biāo)準(zhǔn)化的方法:

上面的標(biāo)準(zhǔn)化和歸一化都有一個(gè)缺點(diǎn)就是每當(dāng)來一個(gè)新的數(shù)據(jù)的時(shí)候就要重新計(jì)算所有的點(diǎn)。

因而當(dāng)數(shù)據(jù)是動(dòng)態(tài)的時(shí)候可以使用下面的幾種計(jì)算方法:

1、arctan反正切函數(shù)標(biāo)準(zhǔn)化:

2、ln函數(shù)標(biāo)準(zhǔn)化

以上這篇使用sklearn進(jìn)行對(duì)數(shù)據(jù)標(biāo)準(zhǔn)化、歸一化以及將數(shù)據(jù)還原的方法就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

相關(guān)文章

最新評(píng)論