Python實(shí)現(xiàn)矩陣相乘的三種方法小結(jié)
問(wèn)題描述
分別實(shí)現(xiàn)矩陣相乘的3種算法,比較三種算法在矩陣大小分別為22∗2222∗22, 23∗2323∗23, 24∗2424∗24, 25∗2525∗25, 26∗2626∗26, 27∗2727∗27, 28∗2828∗28, 29∗2929∗29時(shí)的運(yùn)行時(shí)間與MATLAB自帶的矩陣相乘的運(yùn)行時(shí)間,繪制時(shí)間對(duì)比圖。
解題方法
本文采用了以下方法進(jìn)行求值:矩陣計(jì)算法、定義法、分治法和Strassen方法。這里我們使用Matlab以及Python對(duì)這個(gè)問(wèn)題進(jìn)行處理,比較兩種語(yǔ)言在一樣的條件下,運(yùn)算速度的差別。
編程語(yǔ)言
Python
具體代碼
#-*- coding: utf-8 -*- from matplotlib.font_manager import FontProperties import numpy as np import time import random import math import copy import matplotlib.pyplot as plt #n = [2**2, 2**3, 2**4, 2**5, 2**6, 2**7, 2**8, 2**9, 2**10, 2**11, 2**12] n = [2**2, 2**3, 2**4, 2**5, 2**6, 2**7, 2**8, 2**9, 2**10, 2**11] Sum_time1 = [] Sum_time2 = [] Sum_time3 = [] Sum_time4 = [] for m in n: A = np.random.randint(0, 2, [m, m]) B = np.random.randint(0, 2, [m, m]) A1 = np.mat(A) B1 = np.mat(B) time_start = time.time() C1 = A1*B1 time_end = time.time() Sum_time1.append(time_end - time_start) C2 = np.zeros([m, m], dtype = np.int) time_start = time.time() for i in range(m): for k in range(m): for j in range(m): C2[i, j] = C2[i, j] + A[i, k] * B[k, j] time_end = time.time() Sum_time2.append(time_end - time_start) A11 = np.mat(A[0:m//2, 0:m//2]) A12 = np.mat(A[0:m//2, m//2:m]) A21 = np.mat(A[m//2:m, 0:m//2]) A22 = np.mat(A[m//2:m, m//2:m]) B11 = np.mat(B[0:m//2, 0:m//2]) B12 = np.mat(B[0:m//2, m//2:m]) B21 = np.mat(B[m//2:m, 0:m//2]) B22 = np.mat(B[m//2:m, m//2:m]) time_start = time.time() C11 = A11 * B11 + A12 * B21 C12 = A11 * B12 + A12 * B22 C21 = A21 * B11 + A22 * B21 C22 = A21 * B12 + A22 * B22 C3 = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22)))) time_end = time.time() Sum_time3.append(time_end - time_start) time_start = time.time() M1 = A11 * (B12 - B22) M2 = (A11 + A12) * B22 M3 = (A21 + A22) * B11 M4 = A22 * (B21 - B11) M5 = (A11 + A22) * (B11 + B22) M6 = (A12 - A22) * (B21 + B22) M7 = (A11 - A21) * (B11 + B12) C11 = M5 + M4 - M2 + M6 C12 = M1 + M2 C21 = M3 + M4 C22 = M5 + M1 - M3 - M7 C4 = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22)))) time_end = time.time() Sum_time4.append(time_end - time_start) f1 = open('python_time1.txt', 'w') for ele in Sum_time1: f1.writelines(str(ele) + '\n') f1.close() f2 = open('python_time2.txt', 'w') for ele in Sum_time2: f2.writelines(str(ele) + '\n') f2.close() f3 = open('python_time3.txt', 'w') for ele in Sum_time3: f3.writelines(str(ele) + '\n') f3.close() f4 = open('python_time4.txt', 'w') for ele in Sum_time4: f4.writelines(str(ele) + '\n') f4.close() font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=8) plt.figure(1) plt.subplot(221) plt.semilogx(n, Sum_time1, 'r-*') plt.ylabel(u"時(shí)間(s)", fontproperties=font) plt.xlabel(u"矩陣的維度n", fontproperties=font) plt.title(u'python自帶的方法', fontproperties=font) plt.subplot(222) plt.semilogx(n, Sum_time2, 'b-*') plt.ylabel(u"時(shí)間(s)", fontproperties=font) plt.xlabel(u"矩陣的維度n", fontproperties=font) plt.title(u'定義法', fontproperties=font) plt.subplot(223) plt.semilogx(n, Sum_time3, 'y-*') plt.ylabel(u"時(shí)間(s)", fontproperties=font) plt.xlabel(u"矩陣的維度n", fontproperties=font) plt.title( u'分治法', fontproperties=font) plt.subplot(224) plt.semilogx(n, Sum_time4, 'g-*') plt.ylabel(u"時(shí)間(s)", fontproperties=font) plt.xlabel(u"矩陣的維度n", fontproperties=font) plt.title( u'Strasses法', fontproperties=font) plt.figure(2) plt.semilogx(n, Sum_time1, 'r-*', n, Sum_time2, 'b-+', n, Sum_time3, 'y-o', n, Sum_time4, 'g-^') #plt.legend(u'python自帶的方法', u'定義法', u'分治法', u'Strasses法', fontproperties=font) plt.show()
以上這篇Python實(shí)現(xiàn)矩陣相乘的三種方法小結(jié)就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
django中related_name的用法說(shuō)明
這篇文章主要介紹了django中related_name的用法說(shuō)明,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-05-05用不到50行的Python代碼構(gòu)建最小的區(qū)塊鏈
這篇文章主要為大家詳細(xì)介紹了用不到50行的Python代碼構(gòu)建最小的區(qū)塊鏈,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2017-11-11python根據(jù)距離和時(shí)長(zhǎng)計(jì)算配速示例
這篇文章主要介紹了python根據(jù)距離和時(shí)長(zhǎng)計(jì)算配速示例,需要的朋友可以參考下2014-02-02Python學(xué)習(xí)筆記之列表推導(dǎo)式實(shí)例分析
這篇文章主要介紹了Python學(xué)習(xí)筆記之列表推導(dǎo)式,結(jié)合實(shí)例形式分析Python列表推導(dǎo)式的原理、寫法與相關(guān)使用技巧,需要的朋友可以參考下2019-08-08Python Paramiko創(chuàng)建文件目錄并上傳文件詳解
Paramiko是一個(gè)用于進(jìn)行SSH2會(huì)話的Python庫(kù),它支持加密、認(rèn)證和文件傳輸?shù)裙δ?本文旨在詳細(xì)指導(dǎo)新手朋友如何使用Python的Paramiko庫(kù)來(lái)創(chuàng)建遠(yuǎn)程文件目錄并上傳文件,希望對(duì)大家有所幫助2024-10-10Pytorch中torch.unsqueeze()與torch.squeeze()函數(shù)詳細(xì)解析
torch.squeeze()這個(gè)函數(shù)主要對(duì)數(shù)據(jù)的維度進(jìn)行壓縮,去掉維數(shù)為1的的維度,下面這篇文章主要給大家介紹了關(guān)于Pytorch中torch.unsqueeze()與torch.squeeze()函數(shù)詳細(xì)的相關(guān)資料,需要的朋友可以參考下2023-02-02解決pandas報(bào)錯(cuò)'DataFrame' object has no
這篇文章主要介紹了解決pandas報(bào)錯(cuò)'DataFrame' object has no attribute 'as_matrix'問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2023-08-08關(guān)于Python中flask-httpauth庫(kù)用法詳解
這篇文章主要介紹了關(guān)于Python中flask-httpauth庫(kù)用法詳解,Flask-HTTPAuth是一個(gè)?Flask?擴(kuò)展,它簡(jiǎn)化了?HTTP?身份驗(yàn)證與?Flask?路由的使用,需要的朋友可以參考下2023-04-04