欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python實(shí)現(xiàn)決策樹(shù)分類(2)

 更新時(shí)間:2018年08月30日 17:05:18   作者:momaojia  
這篇文章主要介紹了python實(shí)現(xiàn)決策樹(shù)分類的相關(guān)資料,用于實(shí)際的數(shù)據(jù)分類,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下

上一篇文章中,我們已經(jīng)構(gòu)建了決策樹(shù),接下來(lái)可以使用它用于實(shí)際的數(shù)據(jù)分類。在執(zhí)行數(shù)據(jù)分類時(shí),需要決策時(shí)以及標(biāo)簽向量。程序比較測(cè)試數(shù)據(jù)和決策樹(shù)上的數(shù)值,遞歸執(zhí)行直到進(jìn)入葉子節(jié)點(diǎn)。

這篇文章主要使用決策樹(shù)分類器就行分類,數(shù)據(jù)集采用UCI數(shù)據(jù)庫(kù)中的紅酒,白酒數(shù)據(jù),主要特征包括12個(gè),主要有非揮發(fā)性酸,揮發(fā)性酸度, 檸檬酸, 殘?zhí)呛?氯化物, 游離二氧化硫, 總二氧化硫,密度, pH,硫酸鹽,酒精, 質(zhì)量等特征。

下面是具體代碼的實(shí)現(xiàn):

#coding :utf-8
'''
2017.6.26 author :Erin 
     function: "decesion tree" ID3
     
'''
import numpy as np
import pandas as pd
from math import log
import operator 
import random
def load_data():
  
  red = [line.strip().split(';') for line in open('e:/a/winequality-red.csv')]
  white = [line.strip().split(';') for line in open('e:/a/winequality-white.csv')]
  data=red+white
  random.shuffle(data) #打亂data
  x_train=data[:800]
  x_test=data[800:]
  
  features=['fixed','volatile','citric','residual','chlorides','free','total','density','pH','sulphates','alcohol','quality']
  return x_train,x_test,features
 
def cal_entropy(dataSet):
 
  
  numEntries = len(dataSet)
  labelCounts = {}
  for featVec in dataSet:
    label = featVec[-1]
    if label not in labelCounts.keys():
      labelCounts[label] = 0
    labelCounts[label] += 1
  entropy = 0.0
  for key in labelCounts.keys():
    p_i = float(labelCounts[key]/numEntries)
    entropy -= p_i * log(p_i,2)#log(x,10)表示以10 為底的對(duì)數(shù)
  return entropy
 
def split_data(data,feature_index,value):
  '''
  劃分?jǐn)?shù)據(jù)集
  feature_index:用于劃分特征的列數(shù),例如“年齡”
  value:劃分后的屬性值:例如“青少年”
  '''
  data_split=[]#劃分后的數(shù)據(jù)集
  for feature in data:
    if feature[feature_index]==value:
      reFeature=feature[:feature_index]
      reFeature.extend(feature[feature_index+1:])
      data_split.append(reFeature)
  return data_split
def choose_best_to_split(data):
  
  '''
  根據(jù)每個(gè)特征的信息增益,選擇最大的劃分?jǐn)?shù)據(jù)集的索引特征
  '''
  
  count_feature=len(data[0])-1#特征個(gè)數(shù)4
  #print(count_feature)#4
  entropy=cal_entropy(data)#原數(shù)據(jù)總的信息熵
  #print(entropy)#0.9402859586706309
  
  max_info_gain=0.0#信息增益最大
  split_fea_index = -1#信息增益最大,對(duì)應(yīng)的索引號(hào)
 
  for i in range(count_feature):
    
    feature_list=[fe_index[i] for fe_index in data]#獲取該列所有特征值
    #######################################
 
    # print(feature_list)
    unqval=set(feature_list)#去除重復(fù)
    Pro_entropy=0.0#特征的熵
    for value in unqval:#遍歷改特征下的所有屬性
      sub_data=split_data(data,i,value)
      pro=len(sub_data)/float(len(data))
      Pro_entropy+=pro*cal_entropy(sub_data)
      #print(Pro_entropy)
      
    info_gain=entropy-Pro_entropy
    if(info_gain>max_info_gain):
      max_info_gain=info_gain
      split_fea_index=i
  return split_fea_index
    
    
##################################################
def most_occur_label(labels):
  #sorted_label_count[0][0] 次數(shù)最多的類標(biāo)簽
  label_count={}
  for label in labels:
    if label not in label_count.keys():
      label_count[label]=0
    else:
      label_count[label]+=1
    sorted_label_count = sorted(label_count.items(),key = operator.itemgetter(1),reverse = True)
  return sorted_label_count[0][0]
def build_decesion_tree(dataSet,featnames):
  '''
  字典的鍵存放節(jié)點(diǎn)信息,分支及葉子節(jié)點(diǎn)存放值
  '''
  featname = featnames[:]       ################
  classlist = [featvec[-1] for featvec in dataSet] #此節(jié)點(diǎn)的分類情況
  if classlist.count(classlist[0]) == len(classlist): #全部屬于一類
    return classlist[0]
  if len(dataSet[0]) == 1:     #分完了,沒(méi)有屬性了
    return Vote(classlist)    #少數(shù)服從多數(shù)
  # 選擇一個(gè)最優(yōu)特征進(jìn)行劃分
  bestFeat = choose_best_to_split(dataSet)
  bestFeatname = featname[bestFeat]
  del(featname[bestFeat])   #防止下標(biāo)不準(zhǔn)
  DecisionTree = {bestFeatname:{}}
  # 創(chuàng)建分支,先找出所有屬性值,即分支數(shù)
  allvalue = [vec[bestFeat] for vec in dataSet]
  specvalue = sorted(list(set(allvalue))) #使有一定順序
  for v in specvalue:
    copyfeatname = featname[:]
    DecisionTree[bestFeatname][v] = build_decesion_tree(split_data(dataSet,bestFeat,v),copyfeatname)
  return DecisionTree
 
def classify(Tree, featnames, X):
  classLabel=''
  root = list(Tree.keys())[0]
  firstDict = Tree[root]
  featindex = featnames.index(root) #根節(jié)點(diǎn)的屬性下標(biāo)
  #classLabel='0'
  for key in firstDict.keys():  #根屬性的取值,取哪個(gè)就走往哪顆子樹(shù)
    if X[featindex] == key:
      if type(firstDict[key]) == type({}):
        classLabel = classify(firstDict[key],featnames,X)
      else:
        classLabel = firstDict[key]
  return classLabel
 
  
if __name__ == '__main__':
  x_train,x_test,features=load_data()
  split_fea_index=choose_best_to_split(x_train)
  newtree=build_decesion_tree(x_train,features)
  #print(newtree)
  #classLabel=classify(newtree, features, ['7.4','0.66','0','1.8','0.075','13','40','0.9978','3.51','0.56','9.4','5'] )
  #print(classLabel)
  
  count=0
  for test in x_test:
    label=classify(newtree, features,test)
    
    if(label==test[-1]):
      count=count+1
  acucy=float(count/len(x_test))
  print(acucy)

測(cè)試的準(zhǔn)確率大概在0.7左右。至此決策樹(shù)分類算法結(jié)束。本文代碼地址

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

  • 帶你用Python實(shí)現(xiàn)Saga 分布式事務(wù)的方法

    帶你用Python實(shí)現(xiàn)Saga 分布式事務(wù)的方法

    在這篇文章里,我們介紹了 SAGA 的理論知識(shí),也通過(guò)一個(gè)例子,完整給出了編寫一個(gè) SAGA 事務(wù)的過(guò)程,涵蓋了正常成功完成,異常情況,以及成功回滾的情況,需要的朋友參考下吧
    2021-09-09
  • Python代碼調(diào)試的幾種方法總結(jié)

    Python代碼調(diào)試的幾種方法總結(jié)

    這篇文章主要介紹了Python代碼調(diào)試的幾種方法總結(jié),本文來(lái)自于IBM官方網(wǎng)站技術(shù)文檔,需要的朋友可以參考下
    2015-04-04
  • PyQt5 在label顯示的圖片中繪制矩形的方法

    PyQt5 在label顯示的圖片中繪制矩形的方法

    今天小編就為大家分享一篇PyQt5 在label顯示的圖片中繪制矩形的方法,具有很好的參考價(jià)值。希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2019-06-06
  • python中多個(gè)裝飾器的執(zhí)行順序詳解

    python中多個(gè)裝飾器的執(zhí)行順序詳解

    裝飾器是程序開(kāi)發(fā)中經(jīng)常會(huì)用到的一個(gè)功能,也是python語(yǔ)言開(kāi)發(fā)的基礎(chǔ)知識(shí)。這篇文章主要介紹了python中多個(gè)裝飾器的執(zhí)行順序詳解,小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧
    2018-10-10
  • Python如何繪制概率分布直方圖淺析

    Python如何繪制概率分布直方圖淺析

    項(xiàng)目中在前期經(jīng)常要看下數(shù)據(jù)的分布情況,這對(duì)于探究數(shù)據(jù)規(guī)律非常有用,概率分布表示樣本數(shù)據(jù)的模樣,使用Python繪制頻率分布直方圖非常簡(jiǎn)潔,因?yàn)橛玫念l次非常高,這篇文章主要給大家介紹了關(guān)于Python如何繪制概率分布直方圖的相關(guān)資料,需要的朋友可以參考下
    2021-12-12
  • Python枚舉之Enum模塊的原理與應(yīng)用詳解

    Python枚舉之Enum模塊的原理與應(yīng)用詳解

    前段時(shí)間在閱讀別人的代碼時(shí),看到代碼中有好多數(shù)字,雖然增加的注釋,哪個(gè)值代表哪種狀態(tài),但還是看起來(lái)很難受,不優(yōu)雅,如何改善這個(gè)問(wèn)題呢?當(dāng)然是枚舉,本文將深入探討Python枚舉中的Enum模塊,需要的朋友可以參考下
    2023-11-11
  • Python加速程序運(yùn)行的方法

    Python加速程序運(yùn)行的方法

    這篇文章主要介紹了Python加速程序運(yùn)行的方法,文中講解非常細(xì)致,代碼幫助大家更好的理解和學(xué)習(xí),感興趣的朋友可以了解下
    2020-07-07
  • 詳解python的循環(huán)

    詳解python的循環(huán)

    這篇文章主要為大家介紹了python的循環(huán),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來(lái)幫助
    2021-12-12
  • Pyspark 線性回歸梯度下降交叉驗(yàn)證知識(shí)點(diǎn)詳解

    Pyspark 線性回歸梯度下降交叉驗(yàn)證知識(shí)點(diǎn)詳解

    在本篇內(nèi)容里小編給大家整理的是一篇關(guān)于Pyspark 線性回歸梯度下降交叉驗(yàn)證的相關(guān)知識(shí)點(diǎn)及實(shí)例,需要的朋友們可以參考下。
    2021-12-12
  • python+selenium+autoit實(shí)現(xiàn)文件上傳功能

    python+selenium+autoit實(shí)現(xiàn)文件上傳功能

    這篇文章主要介紹了python+selenium+autoit實(shí)現(xiàn)文件上傳功能,需要的朋友可以參考下
    2017-08-08

最新評(píng)論