基于隨機(jī)梯度下降的矩陣分解推薦算法(python)
SVD是矩陣分解常用的方法,其原理為:矩陣M可以寫成矩陣A、B與C相乘得到,而B可以與A或者C合并,就變成了兩個(gè)元素M1與M2的矩陣相乘可以得到M。
矩陣分解推薦的思想就是基于此,將每個(gè)user和item的內(nèi)在feature構(gòu)成的矩陣分別表示為M1與M2,則內(nèi)在feature的乘積得到M;因此我們可以利用已有數(shù)據(jù)(user對(duì)item的打分)通過隨機(jī)梯度下降的方法計(jì)算出現(xiàn)有user和item最可能的feature對(duì)應(yīng)到的M1與M2(相當(dāng)于得到每個(gè)user和每個(gè)item的內(nèi)在屬性),這樣就可以得到通過feature之間的內(nèi)積得到user沒有打過分的item的分?jǐn)?shù)。
本文所采用的數(shù)據(jù)是movielens中的數(shù)據(jù),且自行切割成了train和test,但是由于數(shù)據(jù)量較大,沒有用到全部數(shù)據(jù)。
代碼如下:
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 9 19:33:00 2017
@author: wjw
"""
import pandas as pd
import numpy as np
import os
def difference(left,right,on): #求兩個(gè)dataframe的差集
df = pd.merge(left,right,how='left',on=on) #參數(shù)on指的是用于連接的列索引名稱
left_columns = left.columns
col_y = df.columns[-1] # 得到最后一列
df = df[df[col_y].isnull()]#得到boolean的list
df = df.iloc[:,0:left_columns.size]#得到的數(shù)據(jù)里面還有其他同列名的column
df.columns = left_columns # 重新定義columns
return df
def readfile(filepath): #讀取文件,同時(shí)得到訓(xùn)練集和測(cè)試集
pwd = os.getcwd()#返回當(dāng)前工程的工作目錄
os.chdir(os.path.dirname(filepath))
#os.path.dirname()獲得filepath文件的目錄;chdir()切換到filepath目錄下
initialData = pd.read_csv(os.path.basename(filepath))
#basename()獲取指定目錄的相對(duì)路徑
os.chdir(pwd)#回到先前工作目錄下
predData = initialData.iloc[:,0:3] #將最后一列數(shù)據(jù)去掉
newIndexData = predData.drop_duplicates()
trainData = newIndexData.sample(axis=0,frac = 0.1) #90%的數(shù)據(jù)作為訓(xùn)練集
testData = difference(newIndexData,trainData,['userId','movieId']).sample(axis=0,frac=0.1)
return trainData,testData
def getmodel(train):
slowRate = 0.99
preRmse = 10000000.0
max_iter = 100
features = 3
lamda = 0.2
gama = 0.01 #隨機(jī)梯度下降中加入,防止更新過度
user = pd.DataFrame(train.userId.drop_duplicates(),columns=['userId']).reset_index(drop=True) #把在原來(lái)dataFrame中的索引重新設(shè)置,drop=True并拋棄
movie = pd.DataFrame(train.movieId.drop_duplicates(),columns=['movieId']).reset_index(drop=True)
userNum = user.count().loc['userId'] #671
movieNum = movie.count().loc['movieId']
userFeatures = np.random.rand(userNum,features) #構(gòu)造user和movie的特征向量集合
movieFeatures = np.random.rand(movieNum,features)
#假設(shè)每個(gè)user和每個(gè)movie有3個(gè)feature
userFeaturesFrame =user.join(pd.DataFrame(userFeatures,columns = ['f1','f2','f3']))
movieFeaturesFrame =movie.join(pd.DataFrame(movieFeatures,columns= ['f1','f2','f3']))
userFeaturesFrame = userFeaturesFrame.set_index('userId')
movieFeaturesFrame = movieFeaturesFrame.set_index('movieId') #重新設(shè)置index
for i in range(max_iter):
rmse = 0
n = 0
for index,row in user.iterrows():
uId = row.userId
userFeature = userFeaturesFrame.loc[uId] #得到userFeatureFrame中對(duì)應(yīng)uId的feature
u_m = train[train['userId'] == uId] #找到在train中userId點(diǎn)評(píng)過的movieId的data
for index,row in u_m.iterrows():
u_mId = int(row.movieId)
realRating = row.rating
movieFeature = movieFeaturesFrame.loc[u_mId]
eui = realRating-np.dot(userFeature,movieFeature)
rmse += pow(eui,2)
n += 1
userFeaturesFrame.loc[uId] += gama * (eui*movieFeature-lamda*userFeature)
movieFeaturesFrame.loc[u_mId] += gama*(eui*userFeature-lamda*movieFeature)
nowRmse = np.sqrt(rmse*1.0/n)
print('step:%f,rmse:%f'%((i+1),nowRmse))
if nowRmse<preRmse:
preRmse = nowRmse
elif nowRmse<0.5:
break
elif nowRmse-preRmse<=0.001:
break
gama*=slowRate
return userFeaturesFrame,movieFeaturesFrame
def evaluate(userFeaturesFrame,movieFeaturesFrame,test):
test['predictRating']='NAN' # 新增一列
for index,row in test.iterrows():
print(index)
userId = row.userId
movieId = row.movieId
if userId not in userFeaturesFrame.index or movieId not in movieFeaturesFrame.index:
continue
userFeature = userFeaturesFrame.loc[userId]
movieFeature = movieFeaturesFrame.loc[movieId]
test.loc[index,'predictRating'] = np.dot(userFeature,movieFeature) #不定位到不能修改值
return test
if __name__ == "__main__":
filepath = r"E:\學(xué)習(xí)\研究生\推薦系統(tǒng)\ml-latest-small\ratings.csv"
train,test = readfile(filepath)
userFeaturesFrame,movieFeaturesFrame = getmodel(train)
result = evaluate(userFeaturesFrame,movieFeaturesFrame,test)
在test中得到的結(jié)果為:

NAN則是訓(xùn)練集中沒有的數(shù)據(jù)
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Python隨機(jī)數(shù)種子(random seed)的使用
在科學(xué)技術(shù)和機(jī)器學(xué)習(xí)等其他算法相關(guān)任務(wù)中,我們經(jīng)常需要用到隨機(jī)數(shù),本文就詳細(xì)的介紹一下Python隨機(jī)數(shù)種子,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2021-07-07
詳解用Pytest+Allure生成漂亮的HTML圖形化測(cè)試報(bào)告
這篇文章主要介紹了詳解用Pytest+Allure生成漂亮的HTML圖形化測(cè)試報(bào)告,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-03-03
Django使用模板后無(wú)法找到靜態(tài)資源文件問題解決
這篇文章主要介紹了Django使用模板后無(wú)法找到靜態(tài)資源文件問題解決,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-07-07
Python filter()及reduce()函數(shù)使用方法解析
這篇文章主要介紹了Python filter()及reduce()函數(shù)使用方法解析,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-09-09
Python iter()函數(shù)用法實(shí)例分析
這篇文章主要介紹了Python iter()函數(shù)用法,結(jié)合實(shí)例形式詳細(xì)分析了Python iter()函數(shù)的功能、使用方法及相關(guān)操作注意事項(xiàng),需要的朋友可以參考下2018-03-03
python實(shí)現(xiàn)信號(hào)時(shí)域統(tǒng)計(jì)特征提取代碼
今天小編就為大家分享一篇python實(shí)現(xiàn)信號(hào)時(shí)域統(tǒng)計(jì)特征提取代碼,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來(lái)看看吧2020-02-02
langchain Prompt大語(yǔ)言模型使用技巧詳解
這篇文章主要為大家介紹了langchain Prompt大語(yǔ)言模型使用技巧詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-07-07

